Skip to content

Latest commit

 

History

History
179 lines (153 loc) · 5.52 KB

Readme.md

File metadata and controls

179 lines (153 loc) · 5.52 KB

Introduction

  • Learning ncnn and cpp with yolo. My device iscpu, so feel easy to run
  • Folder Tree:
|__ cpp_root
|       |__ ncnn
|       |__ eigen-3.3.9
|       |__ opencv_setup
|       |__ yolo_ncnn_cpp  --> this repository
|       |__ export_to_ncnn

Install NCNN

To install ncnn, please follow build tutorial of ncnn to build on your own device or follow me below

  • Install dependencies:
sudo apt update
sudo apt install build-essential git cmake libprotobuf-dev protobuf-compiler libvulkan-dev vulkan-utils libopencv-dev
sudo apt-get install libprotobuf-dev protobuf-compiler
sudo apt-get install libopencv-dev
unzip eigen-3.3.9.zip
cd eigen-3.3.9
mkdir build
cd build
cmake ..
sudo make install
mkdir opencv_setup && cd opencv_setup
sudo apt update && sudo apt install -y cmake g++ wget unzip
wget -O opencv.zip https://github.com/opencv/opencv/archive/4.x.zip
unzip opencv.zip
mkdir -p build && cd build
cmake  ../opencv-4.x
cmake --build .
  • If you want to install ncnn with cpu (ubuntu) (after installing all required dependencies in ncnn repo):
git clone https://github.com/Tencent/ncnn.git
cd ncnn
git submodule update --init
mkdir -p build
cd build
# cmake -DCMAKE_BUILD_TYPE=Release -DNCNN_VULKAN=OFF -DNCNN_CUDA=OFF -DNCNN_RUNTIME_CPU=ON  -DNCNN_SYSTEM_GLSLANG=ON -DNCNN_SHARED_LIB=ON ..
cmake -DCMAKE_BUILD_TYPE=Release -DNCNN_VULKAN=OFF -DNCNN_RUNTIME_CPU=ON -DNCNN_SYSTEM_GLSLANG=ON -DNCNN_BUILD_EXAMPLES=OFF -DNCNN_SHARED_LIB=ON ..
make
make install

Export to ncnn

Follow this tutorial or follow me bellow:

cd export_to_ncnn
git clone https://github.com/ultralytics/ultralytics.git  # clone
cd ultralytics
git checkout d99e04daa1290c226a3fae825401361b17ce164c # switch to commit id
pip install -r requirements.txt  # install
pip install -e . # install ultralytics as package
  • Update code in ultralytics/ultralytics/nn/modules.py at line 398-411:
# def forward(self, x):
    #     shape = x[0].shape  # BCHW
    #     for i in range(self.nl):
    #         x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
    #     if self.training:
    #         return x
    #     elif self.dynamic or self.shape != shape:
    #         self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
    #         self.shape = shape
    # 
    #     box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
    #     dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
    #     y = torch.cat((dbox, cls.sigmoid()), 1)
    #     return y if self.export else (y, x)

def forward(self, x):
    z = []  # inference output
    for i in range(self.nl):
        boxes = self.cv2[i](x[i]).permute(0, 2, 3, 1)
        scores = self.cv3[i](x[i]).sigmoid().permute(0, 2, 3, 1)
        feat = torch.cat((boxes, scores), -1)
        z.append(feat)
    return tuple(z)
  • Export model to torchscript:
cd ..
yolo export model=yolov8s.pt format=torchscript
  • Download pnnx to export from onnx to ncnn:
wget https://github.com/pnnx/pnnx/releases/download/20230217/pnnx-20230217-ubuntu.zip
unzip pnnx-20230217-ubuntu.zip
./pnnx-20230217-ubuntu/pnnx yolov8s.torchscript inputshape=[1,3,640,640] inputshape2=[1,3,320,320]
  • Move your <model_name>.param and <model_name>.bin to anywhere

Build

  • To build yolov5:
cd yolov5
mkdir build
cd build
cmake ..
make
  • To build yolov8:
cd yolov8
mkdir build
cd build
cmake ..
make

Run

  • To infer yolov5:
cd build
./yolov5 ../../test.jpg
  • To infer yolov8:
cd build
./yolov8 ../../test.jpg

TODO

  • build ncnn with -DNCNN_CUDA=ON to test working with GPU
  • step by step to export .pt to ncnn
  • check this line yolov5.opt.use_vulkan_compute = true;