-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathsquarefree_fermat_overpseudoprimes_in_range.pl
125 lines (93 loc) · 3.68 KB
/
squarefree_fermat_overpseudoprimes_in_range.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 28 August 2022
# Edit: 04 September 2022
# https://github.com/trizen
# Generate all the squarefree Fermat overpseudoprimes to a given base with n prime factors in a given range [a,b]. (not in sorted order)
# See also:
# https://en.wikipedia.org/wiki/Almost_prime
# https://trizenx.blogspot.com/2020/08/pseudoprimes-construction-methods-and.html
use 5.020;
use warnings;
use ntheory qw(:all);
use experimental qw(signatures);
use Memoize qw(memoize);
memoize('inverse_znorder_primes');
sub divceil ($x, $y) { # ceil(x/y)
(($x % $y == 0) ? 0 : 1) + divint($x, $y);
}
sub inverse_znorder_primes ($base, $lambda) {
my %seen;
grep { !$seen{$_}++ } factor(subint(powint($base, $lambda), 1));
}
sub iterate_over_primes ($x, $y, $base, $lambda, $callback) {
if ($lambda > 1 and $lambda <= 135) {
foreach my $p (inverse_znorder_primes($base, $lambda)) {
next if $p < $x;
last if $p > $y;
#znorder($base, $p) == $lambda or next;
$callback->($p);
}
return;
}
if ($lambda > 1) {
for (my $w = $lambda * divceil($x - 1, $lambda) ; $w <= $y ; $w += $lambda) {
if (is_prime($w + 1) and powmod($base, $lambda, $w + 1) == 1) {
$callback->($w + 1);
}
}
return;
}
for (my $p = next_prime($x - 1) ; $p <= $y ; $p = next_prime($p)) {
$callback->($p);
}
}
sub squarefree_fermat_overpseudoprimes_in_range ($A, $B, $k, $base, $callback) {
$A = vecmax($A, pn_primorial($k));
my $F;
$F = sub ($m, $lambda, $lo, $k) {
my $hi = rootint(divint($B, $m), $k);
if ($lo > $hi) {
return;
}
if ($k == 1) {
$lo = vecmax($lo, divceil($A, $m));
if ($lo > $hi) {
return;
}
iterate_over_primes(
$lo, $hi, $base, $lambda,
sub ($p) {
if (powmod($base, $lambda, $p) == 1) {
if (($m * $p - 1) % $lambda == 0 and znorder($base, $p) == $lambda) {
$callback->($m * $p);
}
}
}
);
return;
}
iterate_over_primes(
$lo, $hi, $base, $lambda,
sub ($p) {
if ($base % $p != 0) {
my $z = znorder($base, $p);
if (($z == $lambda or $lambda == 1) and gcd($z, $m) == 1) {
$F->($m * $p, $z, $p + 1, $k - 1);
}
}
}
);
};
$F->(1, 1, 2, $k);
undef $F;
}
# Generate all the squarefree Fermat overpseudoprimes to base 2 with 3 prime factors in the range [13421773, 412346200100]
my $k = 3;
my $base = 2;
my $from = 13421773;
my $upto = 412346200100;
my @arr; squarefree_fermat_overpseudoprimes_in_range($from, $upto, $k, $base, sub ($n) { push @arr, $n });
say join(', ', sort { $a <=> $b } @arr);
__END__
13421773, 464955857, 536870911, 1220114377, 1541955409, 2454285751, 3435973837, 5256967999, 5726579371, 7030714813, 8493511669, 8538455017, 8788016089, 10545166433, 13893138041, 17112890881, 18723407341, 19089110641, 21335883193, 23652189937, 37408911097, 43215089153, 47978858771, 50032571509, 50807757529, 54975581389, 59850086533, 65700513721, 68713275457, 78889735961, 85139035489, 90171022049, 99737787437, 105207688757, 125402926477, 149583518641, 161624505241, 168003672409, 175303004581, 206005507811, 219687786701, 252749217641, 262106396551, 265866960649, 276676965109, 280792563977, 294207272761, 306566231341, 355774589609, 381491063773