-
Notifications
You must be signed in to change notification settings - Fork 2
/
CNN_1_cont_oneparameter.py
149 lines (107 loc) · 4 KB
/
CNN_1_cont_oneparameter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import Data_load_4 as dl
import Data_load_testdata as dlt
import os
import numpy as np
import tensorflow as tf
import keras
from keras.layers import Input, Dense, Concatenate, Conv2D
from keras.models import Model
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.callbacks import TensorBoard
from keras.callbacks import EarlyStopping
from time import time
current_path = os.getcwd()
DataX = list()
DataY = list()
#Xlength = DataX.__len__() - Xlength
#print(Xlength)
modelname = input("Input model name to save :: ")
totalepoch = 1000
inputPIR = Input(shape=(1, 10, 10))
inputOther = Input(shape=(1,))
model_x1 = Conv2D(32, kernel_size=(3,3), input_shape=(1,10,10), data_format='channels_first', activation='relu')(inputPIR)
model_x1 = keras.layers.BatchNormalization()(model_x1)
model_x1 = keras.layers.MaxPooling2D(pool_size=(2,2))(model_x1)
model_x1 = Conv2D(64, kernel_size=(3,3), activation='relu')(model_x1)
model_x1 = keras.layers.BatchNormalization()(model_x1)
model_x1 = keras.layers.MaxPooling2D(pool_size=(2,2))(model_x1)
model_x1 = keras.layers.Flatten()(model_x1)
model_x2 = Dense(1, input_shape=(1,))(inputOther)
merged = Concatenate(axis=1)([model_x1, model_x2])
model_x3 = Dense(2, activation='softmax')(merged)
model = Model(inputs=[inputPIR, inputOther], outputs=model_x3)
model.summary()
## Data 순서 :: pir , light, temp , humid
#dl.Data_load("None", DataX, DataY)
#dl.Data_load("Human", DataX, DataY)
dlt.Data_load("None", DataX, DataY)
dlt.Data_load("Human", DataX, DataY)
DataX = np.asarray(DataX)
DataY = np.asarray(DataY)
print(DataX.shape)
print(DataY.shape)
DataX = np.reshape(DataX, (int(DataX.__len__()/4), 4, 100))
x_data = list()
y_data = list()
x_data_test = list()
y_data_test = list()
x_data_other = list()
x_data_other_test = list()
tensorboard = TensorBoard(log_dir="logs/{}".format(time()))
model.compile(optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
loss='mean_squared_error',
metrics=['acc'])
X_train, X_test, Y_train, Y_test = train_test_split(DataX, DataY, test_size=0.3, random_state=777, shuffle=True)
for i in range(len(X_train)):
x_data.append(X_train[i][0])
#Light
x_data_other.append(X_train[i][1][0])
#Temp
x_data_other.append(X_train[i][2][0])
#Humid
x_data_other.append(X_train[i][3][0])
for i in range(len(X_test)):
x_data_test.append(X_test[i][0])
#Light
#x_data_other_test.append(X_test[i][1][0])
#Temp
#x_data_other_test.append(X_test[i][2][0])
#Humid
x_data_other_test.append(X_test[i][3][0])
x_data = np.asarray(x_data)
x_data_other = np.asarray(x_data_other)
x_data = np.reshape(x_data, (-1, 1, 10, 10))
x_data_other = np.reshape(x_data_other, (-1, 1))
x_data_test = np.reshape(x_data_test, (-1, 1, 10, 10))
x_data_other_test = np.reshape(x_data_other_test, (-1,1))
k = 0
for i in range(0, DataY.__len__()):
if DataY[i][0] == 1:
k = k + 1
print("None 데이터셋 갯수 :: " + str(k))
print(X_train.shape)
print(Y_train.shape)
print(x_data.shape)
print(x_data_other.shape)
print(x_data_test.shape)
#early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=12, verbose=0, mode='auto')
model.fit([x_data,x_data_other], Y_train, epochs=totalepoch, batch_size=256, shuffle='True', validation_data=([x_data_test,x_data_other_test], Y_test), verbose=1, callbacks=[tensorboard])
x_validate = x_data[:3000]
x_validate_other = x_data_other[:3000]
y_validate = Y_train[:3000]
print(y_validate)
results = model.evaluate([x_validate,x_validate_other], y_validate)
print("Validate data[loss, accuracy] :: ")
print(results)
#print(model.predict_classes(X_test[:1, :], verbose=0))
#print('----------------------------------------------')
model_json = model.to_json()
with open("Models/" + modelname + ".json", "w") as json_file :
json_file.write(model_json)
model.save_weights("Models/" + modelname + ".h5")
print(modelname)
print("Model Saved...!")
print("Train Dataset .. :: ")
print(X_train.shape)
print("Validate Dataset .. :: ")
print(X_test.shape)