forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupernet.cpp
209 lines (172 loc) · 7.95 KB
/
supernet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#include <fstream>
#include <iostream>
#include <map>
#include <sstream>
#include <vector>
#include <chrono>
#include <opencv2/opencv.hpp>
#include <dirent.h>
#include "NvInfer.h"
#include "utils.h"
#include "cuda_runtime_api.h"
#include "logging.h"
//#define USE_FP16 // comment out this if want to use FP32
#define DEVICE 0 // GPU id
#define BATCH_SIZE 1 // currently, only support BATCH=1
// stuff we know about the network and the input/output blobs
static const int INPUT_H = 120;
static const int INPUT_W = 160;
const char *INPUT_BLOB_NAME = "data";
const char *OUTPUT_BLOB_NAME_1 = "semi";
const char *OUTPUT_BLOB_NAME_2 = "desc";
static Logger gLogger;
// create the engine using only the API and not any parser.
ICudaEngine *createEngine(IBuilder *builder, IBuilderConfig *config, std::string path, DataType dt)
{
INetworkDefinition *network = builder->createNetworkV2(0U);
// Create input tensor of shape { 3, INPUT_H, INPUT_W } with name INPUT_BLOB_NAME
ITensor *data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{1, INPUT_H, INPUT_W});
assert(data);
std::map<std::string, Weights> weightMap = loadWeights(path);
IConvolutionLayer *conv1a = network->addConvolutionNd(*data, 64, DimsHW{3, 3}, weightMap["conv1a.weight"], weightMap["conv1a.bias"]);
assert(conv1a);
conv1a->setStrideNd(DimsHW{1, 1});
conv1a->setPaddingNd(DimsHW{1, 1});
IActivationLayer *relu1 = network->addActivation(*conv1a->getOutput(0), ActivationType::kRELU);
assert(relu1);
IConvolutionLayer *conv1b = network->addConvolutionNd(*relu1->getOutput(0), 64, DimsHW{3, 3}, weightMap["conv1b.weight"], weightMap["conv1b.bias"]);
assert(conv1b);
conv1b->setStrideNd(DimsHW{1, 1});
conv1b->setPaddingNd(DimsHW{1, 1});
IActivationLayer *relu2 = network->addActivation(*conv1b->getOutput(0), ActivationType::kRELU);
assert(relu2);
IPoolingLayer *pool1 = network->addPoolingNd(*relu2->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
assert(pool1);
pool1->setStrideNd(DimsHW{2, 2});
IConvolutionLayer *conv2a = network->addConvolutionNd(*pool1->getOutput(0), 64, DimsHW{3, 3}, weightMap["conv2a.weight"], weightMap["conv2a.bias"]);
assert(conv2a);
conv2a->setStrideNd(DimsHW{1, 1});
conv2a->setPaddingNd(DimsHW{1, 1});
IActivationLayer *relu3 = network->addActivation(*conv2a->getOutput(0), ActivationType::kRELU);
assert(relu3);
IConvolutionLayer *conv2b = network->addConvolutionNd(*relu3->getOutput(0), 64, DimsHW{3, 3}, weightMap["conv2b.weight"], weightMap["conv2b.bias"]);
assert(conv2b);
conv2b->setStrideNd(DimsHW{1, 1});
conv2b->setPaddingNd(DimsHW{1, 1});
IActivationLayer *relu4 = network->addActivation(*conv2b->getOutput(0), ActivationType::kRELU);
assert(relu4);
IPoolingLayer *pool2 = network->addPoolingNd(*relu4->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
assert(pool2);
pool2->setStrideNd(DimsHW{2, 2});
IConvolutionLayer *conv3a = network->addConvolutionNd(*pool2->getOutput(0), 128, DimsHW{3, 3}, weightMap["conv3a.weight"], weightMap["conv3a.bias"]);
assert(conv3a);
conv3a->setStrideNd(DimsHW{1, 1});
conv3a->setPaddingNd(DimsHW{1, 1});
IActivationLayer *relu44 = network->addActivation(*conv3a->getOutput(0), ActivationType::kRELU);
assert(relu44);
IConvolutionLayer *conv3b = network->addConvolutionNd(*relu44->getOutput(0), 128, DimsHW{3, 3}, weightMap["conv3b.weight"], weightMap["conv3b.bias"]);
assert(conv3b);
conv3b->setStrideNd(DimsHW{1, 1});
conv3b->setPaddingNd(DimsHW{1, 1});
IActivationLayer *relu5 = network->addActivation(*conv3b->getOutput(0), ActivationType::kRELU);
assert(relu5);
IPoolingLayer *pool3 = network->addPoolingNd(*relu5->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
assert(pool3);
pool3->setStrideNd(DimsHW{2, 2});
IConvolutionLayer *conv4a = network->addConvolutionNd(*pool3->getOutput(0), 128, DimsHW{3, 3}, weightMap["conv4a.weight"], weightMap["conv4a.bias"]);
assert(conv4a);
conv4a->setStrideNd(DimsHW{1, 1});
conv4a->setPaddingNd(DimsHW{1, 1});
IActivationLayer *relu6 = network->addActivation(*conv4a->getOutput(0), ActivationType::kRELU);
assert(relu6);
IConvolutionLayer *conv4b = network->addConvolutionNd(*relu6->getOutput(0), 128, DimsHW{3, 3}, weightMap["conv4b.weight"], weightMap["conv4b.bias"]);
assert(conv4b);
conv4b->setStrideNd(DimsHW{1, 1});
conv4b->setPaddingNd(DimsHW{1, 1});
IActivationLayer *relu7 = network->addActivation(*conv4b->getOutput(0), ActivationType::kRELU);
assert(relu7);
IConvolutionLayer *convPa = network->addConvolutionNd(*relu7->getOutput(0), 256, DimsHW{3, 3}, weightMap["convPa.weight"], weightMap["convPa.bias"]);
assert(convPa);
convPa->setStrideNd(DimsHW{1, 1});
convPa->setPaddingNd(DimsHW{1, 1});
IActivationLayer *relu8 = network->addActivation(*convPa->getOutput(0), ActivationType::kRELU);
assert(relu8);
IConvolutionLayer *convPb = network->addConvolutionNd(*relu8->getOutput(0), 65, DimsHW{1, 1}, weightMap["convPb.weight"], weightMap["convPb.bias"]);
assert(convPb);
convPb->setStrideNd(DimsHW{1, 1});
IConvolutionLayer *convDa = network->addConvolutionNd(*relu7->getOutput(0), 256, DimsHW{3, 3}, weightMap["convDa.weight"], weightMap["convDa.bias"]);
assert(convDa);
convDa->setStrideNd(DimsHW{1, 1});
convDa->setPaddingNd(DimsHW{1, 1});
IActivationLayer *relu9 = network->addActivation(*convDa->getOutput(0), ActivationType::kRELU);
assert(relu9);
IConvolutionLayer *convDb = network->addConvolutionNd(*relu9->getOutput(0), 256, DimsHW{1, 1}, weightMap["convDb.weight"], weightMap["convDb.bias"]);
assert(convDb);
convDb->setStrideNd(DimsHW{1, 1});
convPb->getOutput(0)->setName(OUTPUT_BLOB_NAME_1);
std::cout << "set name out1" << std::endl;
network->markOutput(*convPb->getOutput(0));
convDb->getOutput(0)->setName(OUTPUT_BLOB_NAME_2);
std::cout << "set name out2" << std::endl;
network->markOutput(*convDb->getOutput(0));
// Build engine
builder->setMaxBatchSize(BATCH_SIZE);
config->setMaxWorkspaceSize(1 << 20);
#ifdef USE_FP16
config->setFlag(BuilderFlag::kFP16);
#endif
ICudaEngine *engine = builder->buildEngineWithConfig(*network, *config);
std::cout << "build out" << std::endl;
// Don't need the network any more
network->destroy();
// Release host memory
for (auto &mem : weightMap)
{
free((void *)(mem.second.values));
}
return engine;
}
// Creat the engine using only the API and not any parser.
void APIToModel(std::string path, IHostMemory **modelStream)
{
// Create builder
IBuilder *builder = createInferBuilder(gLogger);
IBuilderConfig *config = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine *engine = createEngine(builder, config, path, DataType::kFLOAT);
assert(engine != nullptr);
// Serialize the engine
(*modelStream) = engine->serialize();
// Close everything down
engine->destroy();
builder->destroy();
}
int main(int argc, char **argv)
{
cudaSetDevice(DEVICE);
// create a model using the API directly and serialize it to a stream
char *trtModelStream{nullptr};
size_t size{0};
if (argc == 3 && std::string(argv[1]) == "-s")
{
IHostMemory *modelStream{nullptr};
APIToModel(std::string(argv[2]), &modelStream);
assert(modelStream != nullptr);
std::ofstream p("supernet.engine", std::ios::binary);
if (!p)
{
std::cerr << "could not open plan output file" << std::endl;
return -1;
}
p.write(reinterpret_cast<const char *>(modelStream->data()), modelStream->size());
modelStream->destroy();
return 0;
}
else
{
std::cerr << "arguments not right!" << std::endl;
std::cerr << "./supernet -s <path_to_.wts_file> // serialize model to plan file" << std::endl;
return -1;
}
return 0;
}