forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolop.cpp
194 lines (176 loc) · 8.21 KB
/
yolop.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#include "yolop.hpp"
int main(int argc, char** argv) {
cudaSetDevice(DEVICE);
std::string wts_name = "";
std::string engine_name = "";
std::string img_dir;
if (!parse_args(argc, argv, wts_name, engine_name, img_dir)) {
std::cerr << "arguments not right!" << std::endl;
std::cerr << "./yolop -s [.wts] [.engine] // serialize model to plan file" << std::endl;
std::cerr << "./yolop -d [.engine] ../samples // deserialize plan file and run inference" << std::endl;
return -1;
}
// create a model using the API directly and serialize it to a stream
if (!wts_name.empty()) {
IHostMemory* modelStream{ nullptr };
APIToModel(BATCH_SIZE, &modelStream, wts_name);
assert(modelStream != nullptr);
std::ofstream p(engine_name, std::ios::binary);
if (!p) {
std::cerr << "could not open plan output file" << std::endl;
return -1;
}
p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
modelStream->destroy();
return 0;
}
// deserialize the .engine and run inference
std::ifstream file(engine_name, std::ios::binary);
if (!file.good()) {
std::cerr << "read " << engine_name << " error!" << std::endl;
return -1;
}
char *trtModelStream = nullptr;
size_t size = 0;
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
trtModelStream = new char[size];
assert(trtModelStream);
file.read(trtModelStream, size);
file.close();
std::vector<std::string> file_names;
if (read_files_in_dir(img_dir.c_str(), file_names) < 0) {
std::cerr << "read_files_in_dir failed." << std::endl;
return -1;
}
// prepare input data ---------------------------
static float data[BATCH_SIZE * 3 * INPUT_H * INPUT_W];
//for (int i = 0; i < 3 * INPUT_H * INPUT_W; i++)
// data[i] = 1.0;
static float prob[BATCH_SIZE * OUTPUT_SIZE];
static int seg_out[BATCH_SIZE * IMG_H * IMG_W];
static int lane_out[BATCH_SIZE * IMG_H * IMG_W];
IRuntime* runtime = createInferRuntime(gLogger);
assert(runtime != nullptr);
ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size);
assert(engine != nullptr);
IExecutionContext* context = engine->createExecutionContext();
assert(context != nullptr);
delete[] trtModelStream;
assert(engine->getNbBindings() == 4);
void* buffers[4];
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME);
const int output_det_index = engine->getBindingIndex(OUTPUT_DET_NAME);
const int output_seg_index = engine->getBindingIndex(OUTPUT_SEG_NAME);
const int output_lane_index = engine->getBindingIndex(OUTPUT_LANE_NAME);
assert(inputIndex == 0);
assert(output_det_index == 1);
assert(output_seg_index == 2);
assert(output_lane_index == 3);
// Create GPU buffers on device
CUDA_CHECK(cudaMalloc(&buffers[inputIndex], BATCH_SIZE * 3 * INPUT_H * INPUT_W * sizeof(float)));
CUDA_CHECK(cudaMalloc(&buffers[output_det_index], BATCH_SIZE * OUTPUT_SIZE * sizeof(float)));
CUDA_CHECK(cudaMalloc(&buffers[output_seg_index], BATCH_SIZE * IMG_H * IMG_W * sizeof(int)));
CUDA_CHECK(cudaMalloc(&buffers[output_lane_index], BATCH_SIZE * IMG_H * IMG_W * sizeof(int)));
// Create stream
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
// store seg results
cv::Mat tmp_seg(IMG_H, IMG_W, CV_32S, seg_out);
// store lane results
cv::Mat tmp_lane(IMG_H, IMG_W, CV_32S, lane_out);
// PrintMat(tmp_seg);
std::vector<cv::Vec3b> segColor;
segColor.push_back(cv::Vec3b(0, 0, 0));
segColor.push_back(cv::Vec3b(0, 255, 0));
segColor.push_back(cv::Vec3b(255, 0, 0));
std::vector<cv::Vec3b> laneColor;
laneColor.push_back(cv::Vec3b(0, 0, 0));
laneColor.push_back(cv::Vec3b(0, 0, 255));
laneColor.push_back(cv::Vec3b(0, 0, 0));
int fcount = 0; // set for batch-inference
for (int f = 0; f < (int)file_names.size(); f++) {
fcount++;
if (fcount < BATCH_SIZE && f + 1 != (int)file_names.size()) continue;
// preprocess ~3ms
for (int b = 0; b < fcount; b++) {
cv::Mat img = cv::imread(img_dir + "/" + file_names[f - fcount + 1 + b]); // load image takes ~17ms
if (img.empty()) continue;
//cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
cv::Mat pr_img = preprocess_img(img, INPUT_W, INPUT_H); // letterbox
int i = 0;
// BGR to RGB and normalize
for (int row = 0; row < INPUT_H; ++row) {
float* uc_pixel = pr_img.ptr<float>(row);
for (int col = 0; col < INPUT_W; ++col) {
data[b * 3 * INPUT_H * INPUT_W + i] = uc_pixel[0];
data[b * 3 * INPUT_H * INPUT_W + i + INPUT_H * INPUT_W] = uc_pixel[1];
data[b * 3 * INPUT_H * INPUT_W + i + 2 * INPUT_H * INPUT_W] = uc_pixel[2];
uc_pixel += 3;
++i;
}
}
}
// Run inference
auto start = std::chrono::system_clock::now();
doInferenceCpu(*context, stream, buffers, data, prob, seg_out, lane_out, BATCH_SIZE);
auto end = std::chrono::system_clock::now();
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
// postprocess ~0ms
std::vector<std::vector<Yolo::Detection>> batch_res(fcount);
for (int b = 0; b < fcount; b++) {
auto& res = batch_res[b];
nms(res, &prob[b * OUTPUT_SIZE], CONF_THRESH, NMS_THRESH);
}
// show results
for (int b = 0; b < fcount; ++b) {
auto& res = batch_res[b];
//std::cout << res.size() << std::endl;
cv::Mat img = cv::imread(img_dir + "/" + file_names[f - fcount + 1 + b]);
// handling seg and lane results
cv::Mat seg_res(img.rows, img.cols, CV_32S);
cv::resize(tmp_seg, seg_res, seg_res.size(), 0, 0, cv::INTER_NEAREST);
cv::Mat lane_res(img.rows, img.cols, CV_32S);
cv::resize(tmp_lane, lane_res, lane_res.size(), 0, 0, cv::INTER_NEAREST);
for (int row = 0; row < img.rows; ++row) {
uchar* pdata = img.data + row * img.step;
for (int col = 0; col < img.cols; ++col) {
int seg_idx = seg_res.at<int>(row, col);
int lane_idx = lane_res.at<int>(row, col);
//std::cout << "enter" << ix << std::endl;
for (int i = 0; i < 3; ++i) {
if (lane_idx) {
if (i != 2)
pdata[i] = pdata[i] / 2 + laneColor[lane_idx][i] / 2;
}
else if (seg_idx)
pdata[i] = pdata[i] / 2 + segColor[seg_idx][i] / 2;
}
pdata += 3;
}
}
// handling det results
for (size_t j = 0; j < res.size(); ++j) {
cv::Rect r = get_rect(img, res[j].bbox);
cv::rectangle(img, r, cv::Scalar(0x27, 0xC1, 0x36), 2);
cv::putText(img, std::to_string((int)res[j].class_id), cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2);
}
cv::imwrite("../results/_" + file_names[f - fcount + 1 + b], img);
}
fcount = 0;
}
// Release stream and buffers
cudaStreamDestroy(stream);
CUDA_CHECK(cudaFree(buffers[inputIndex]));
CUDA_CHECK(cudaFree(buffers[output_det_index]));
CUDA_CHECK(cudaFree(buffers[output_seg_index]));
CUDA_CHECK(cudaFree(buffers[output_lane_index]));
// Destroy the engine
context->destroy();
engine->destroy();
runtime->destroy();
return 0;
}