This is the documentation for the hpp2plantuml
package, fully contained within
this single org-file.
The current version of the code is:
0.8.3
The source code can be found on GitHub: https://github.com/thibaultmarin/hpp2plantuml.
The purpose of this tool is to convert C++ header files to a UML representation in PlantUML syntax that can be used to generate diagrams with PlantUML.
PlantUML is a program rendering UML diagrams from plain text inputs using an expressive language.
This package generates the text input to PlantUML from C++ header files. Its ambition is limited but it should produce reasonable conversion for simple class hierarchies. It aims at supporting:
- class members with properties (
private
,method
,protected
), methods with basic qualifiers (static
, abstract), - inheritance relationships,
- aggregation relationships (very basic support).
- dependency relationships
The package relies on the CppHeaderParser package for parsing of C++ header files.
The license adopted for this project is the MIT license.
The MIT License (MIT)
Copyright (c) 2016 T
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
This module has mostly standard dependencies; the only exception is the CppHeaderParser module used to parse header files.
argparse | argparse |
robotpy-cppheaderparser | CppHeaderParser |
jinja2 | jinja2 |
The full list of non-standard dependencies is produced by the following source block (returning either imports or a dependency list used in =setup.py=):
(cond
((string= output "import")
(mapconcat
(lambda (el) (concat "import " (cadr el))) dep-list "\n"))
((string= output "requirements")
(concat "["
(mapconcat
(lambda (el) (concat "'" (car el) "'")) dep-list ", ")
"]")))
# %% Imports
import os
import re
import glob
<<py-dependencies("import")>>
The tests rely on the nosetest framework and the package documentation is built with Sphinx.
The package relies on a layer of objects used as intermediate between the parsed
header files (parsed using CppHeaderParser
) and the text output for use with
PlantUML.
The main entry point (~CreatePlantUMLFile~) takes as input a list of header files and creates a ~Diagram~ object from it, which contains the internal object representation extracted jointly from the input files.
Objects for different types (e.g. class, struct, etc.) are initialized at
instantiation time from the parsed header via the parse_members
method.
Conversion to text input in PlantUML syntax is performed by the render
method.
Relationships between objects are extracted from a Diagram
object by listing
inheritance properties and parsing member types into relationship objects.
Some constant variables are defined to store the PlantUML string representation of elementary properties and links.
- The
MEMBER_PROP_MAP
variable maps class member types to corresponding PlantUML characters. - The
LINK_TYPE_MAP
variable stores the PlantUML representation of inheritance and aggregation relationships. CONTAINER_TYPE_MAP
associates object types with internal classes used for their representation.
# %% Constants
# Association between member property and PlantUML symbol
MEMBER_PROP_MAP = {
'private': '-',
'public': '+',
'protected': '#'
}
# Links
LINK_TYPE_MAP = {
'inherit': '<|--',
'aggregation': 'o--',
'composition': '*--',
'dependency': '<..',
'nesting': '+--'
}
# Association between object names and objects
# - The first element is the object type name in the CppHeader object
# - The second element is the iterator used to loop over objects
# - The third element is a function returning the corresponding internal object
CONTAINER_TYPE_MAP = {
'classes': [lambda objs: objs.items(), lambda obj: Class(obj)],
'enums': [lambda objs: objs, lambda obj: Enum(obj)]
}
C++ objects parsed by the CppHeaderParser
module are converted to internal
objects which perform two tasks:
- extract properties supported by PlantUML,
- generate text following the PlantUML syntax representing the object.
The module currently supports class
and enum
objects. They are implemented
via the internal Class
and Enum
objects, which inherits from a common base
class.
C++ objects are represented by objects derived from the base Container
class.
The Container
class is abstract and contains:
- the container type (
class
,enum
,struct
objects are handled asclass
objects), - the object name,
- a list of members (e.g. class variable or method for a class object),
- a
parse_members
method which can build the list of members from a parsed header, - a
render
method with renders the object to text, including the object definition (e.g. “class TestClass”) and its members (e.g. member variables and methods).
# %% Base classes
class Container(object):
"""Base class for C++ objects
This class defines the basic interface for parsed objects (e.g. class).
"""
def __init__(self, container_type, name):
"""Class constructor
Parameters
----------
container_type : str
String representation of container type (``class``, ``struct`` or
``enum``)
name : str
Object name (with ``<``, ``>`` characters removed)
"""
self._container_type = container_type
self._name = re.sub('[<>]', '', re.sub('-', '_', name))
self._member_list = []
self._namespace = ''
self._parent = None
@property
def name(self):
"""Name property accessor
Returns
-------
str
Object name
"""
return self._name
def parse_members(self, header_container):
"""Initialize object from header
Extract object from CppHeaderParser dictionary representing a class, a
struct or an enum object. This extracts the namespace. Use the
``parent`` field to determine is the ``namespace`` description from
``CppHeaderParser`` is a parent object (e.g. class) or a proper
``namespace``.
Parameters
----------
header_container : CppClass or CppEnum
Parsed header for container
"""
namespace = header_container.get('namespace', '')
if namespace:
parent = header_container.get('parent', None)
# Presence of namespace and parent fields indicates a nested class
if not parent:
self._namespace = _cleanup_namespace(namespace)
else:
#self._parent = re.sub('[<>]', '', parent['name'])
self._parent = '::'.join(self._name.split('::')[:-1])
p = parent
while p.get('parent') is not None:
p = p.get('parent', None)
self._namespace = p['namespace']
self._do_parse_members(header_container)
def _do_parse_members(self, header_container):
"""Initialize object from header (abstract method)
Extract object from CppHeaderParser dictionary representing a class, a
struct or an enum object.
Parameters
----------
header_container : CppClass or CppEnum
Parsed header for container
"""
raise NotImplementedError(
'Derived class must implement :func:`_do_parse_members`.')
def render(self):
"""Render object to string
Returns
-------
str
String representation of object following the PlantUML syntax
"""
container_str = self._render_container_def() + ' {\n'
for member in self._member_list:
container_str += '\t' + member.render() + '\n'
container_str += '}\n'
return container_str
def comparison_keys(self):
"""Order comparison key between `ClassRelationship` objects
Use the parent name, the child name then the link type as successive
keys.
Returns
-------
list
`operator.attrgetter` objects for successive fields used as keys
"""
return self._container_type, self._name
def sort_members(self):
"""Sort container members
sort the list of members by type and name
"""
self._member_list.sort(key=lambda obj: obj.comparison_keys())
def _render_container_def(self):
"""String representation of object definition
Return the definition line of an object (e.g. "class MyClass").
Returns
-------
str
Container type and name as string
"""
return self._container_type + ' ' + self._name
Members of Container
objects (e.g. class member variable) are inherited from
the ContainerMember
class. The interface only includes a render
method
returning a string representation of the member. The base class
ContainerMember
defines this method abstract.
# %% Object member
class ContainerMember(object):
"""Base class for members of `Container` object
This class defines the basic interface for object members (e.g. class
variables, etc.)
"""
def __init__(self, header_member, **kwargs):
"""Constructor
Parameters
----------
header_member : str
Member name
"""
self._name = header_member
self._type = None
def render(self):
"""Render object to string (abstract method)
Returns
-------
str
String representation of object member following the PlantUML
syntax
"""
raise NotImplementedError('Derived class must implement `render`.')
def comparison_keys(self):
"""Order comparison key between `ClassRelationship` objects
Use the parent name, the child name then the link type as successive
keys.
Returns
-------
list
`operator.attrgetter` objects for successive fields used as keys
"""
if self._type is not None:
return self._type, self._name
else:
return self._name
C++ class objects are represented using the Class
class. It extends the
~Container~ class adding class properties (template, abstract) and a list of
parent classes. It also offers a method to extract the types of its members,
which is used to determine aggregation relationships between classes.
# %% Class object
class Class(Container):
"""Representation of C++ class
This class derived from `Container` specializes the base class to handle
class definition in C++ headers.
It supports:
* abstract and template classes
* member variables and methods (abstract and static)
* public, private, protected members (static)
"""
def __init__(self, header_class):
"""Constructor
Extract the class name and properties (template, abstract) and
inheritance. Then, extract the class members from the header using the
:func:`parse_members` method.
Parameters
----------
header_class : tuple(str, CppClass)
Parsed header for class object (two-element list where the first
element is the class name and the second element is a CppClass
object)
"""
super().__init__(header_class[1]['declaration_method'], header_class[0])
self._abstract = header_class[1]['abstract']
self._template_type = None
if 'template' in header_class[1]:
self._template_type = _cleanup_single_line(
header_class[1]['template'])
self._inheritance_list = [re.sub('<.*>', '', parent['class'])
for parent in header_class[1]['inherits']]
self.parse_members(header_class[1])
def _do_parse_members(self, header_class):
"""Initialize class object from header
This method extracts class member variables and methods from header.
Parameters
----------
header_class : CppClass
Parsed header for class
"""
member_type_map = [
['properties', ClassVariable],
['methods', ClassMethod]
]
for member_type, member_type_handler in member_type_map:
for member_prop in MEMBER_PROP_MAP.keys():
member_list = header_class[member_type][member_prop]
for header_member in member_list:
if not header_member.get('deleted', False):
self._member_list.append(
member_type_handler(header_member, member_prop))
def build_variable_type_list(self):
"""Get type of member variables
This function extracts the type of each member variable. This is used
to list aggregation relationships between classes.
Returns
-------
list(str)
List of types (as string) for each member variable
"""
variable_type_list = []
for member in self._member_list:
if isinstance(member, ClassVariable):
variable_type_list.append(member.get_type())
return variable_type_list
def build_inheritance_list(self):
"""Get inheritance list
Returns
-------
list(str)
List of class names the current class inherits from
"""
return self._inheritance_list
def _render_container_def(self):
"""Create the string representation of the class
Return the class name with template and abstract properties if
present. The output string follows the PlantUML syntax. Note that
``struct`` and ``union`` types are rendered as ``classes``.
Returns
-------
str
String representation of class
"""
if self._container_type in ['struct', 'union']:
container_type = 'class'
else:
container_type = self._container_type
class_str = container_type + ' ' + self._name
if self._abstract:
class_str = 'abstract ' + class_str
if self._template_type is not None:
class_str += ' <{0}>'.format(self._template_type)
return class_str
Members of C++ classes are represented by the ClassMember
object, which
inherits from the base ~ContainerMember~ class. The ClassMember
class is a
super-class for member variables and class methods.
In addition to the base representation, ClassMember
objects store the type of
the object, the scope (e.g. public or private) and a static flag. The rendering
of the member is mostly common between variables and methods. The ClassMember
class provides the common rendering and relies on child classes implementing the
_render_name
method for specialization.
# %% Class member
class ClassMember(ContainerMember):
"""Class member (variable and method) representation
This class is the base class for class members. The representation
includes the member type (variable or method), name, scope (``public``,
``private`` or ``protected``) and a static flag.
"""
def __init__(self, class_member, member_scope='private'):
"""Constructor
Parameters
----------
class_member : CppVariable or CppMethod
Parsed member object (variable or method)
member_scope : str
Member scope property: ``public``, ``private`` or ``protected``
"""
super().__init__(class_member['name'])
self._type = None
self._static = class_member['static']
self._scope = member_scope
self._properties = []
def render(self):
"""Get string representation of member
The string representation is with the scope indicator and a static
keyword when the member is static. It is postfixed by the type (return
type for class methods) and additional properties (e.g. ``const``
methods are flagged with the ``query`` property). The inner part of
the returned string contains the variable name and signature for
methods. This is obtained using the :func:`_render_name` method.
Returns
-------
str
String representation of member
"""
if len(self._properties) > 0:
props = ' {' + ', '.join(self._properties) + '}'
else:
props = ''
vis = MEMBER_PROP_MAP[self._scope] + \
('{static} ' if self._static else '')
member_str = vis + self._render_name() + \
(' : ' + self._type if self._type else '') + \
props
return member_str
def _render_name(self):
"""Get member name
By default (for member variables), this returns the member name.
Derived classes can override this to control the name rendering
(e.g. add the function prototype for member functions)
"""
return self._name
The specialization required for class member variables is minimal: the member type is extracted from the parsed dictionary, and the rest of the setup is left to the parent class.
# %% Class variable
class ClassVariable(ClassMember):
"""Object representation of class member variables
This class specializes the `ClassMember` object for member variables.
Additionally to the base class, it stores variable types as strings. This
is used to establish aggregation relationships between objects.
"""
def __init__(self, class_variable, member_scope='private'):
"""Constructor
Parameters
----------
class_variable : CppVariable
Parsed class variable object
member_scope : str
Scope property to member variable
"""
assert(isinstance(class_variable,
CppHeaderParser.CppHeaderParser.CppVariable))
super().__init__(class_variable, member_scope)
self._type = _cleanup_type(class_variable['type'])
def get_type(self):
"""Variable type accessor
Returns
-------
str
Variable type as string
"""
return self._type
Member methods store additional information on the class members: an abstract
flag is used for purely virtual methods, the method name is modified to add a
tilde sign (~
) prefix for destructor methods and a list of parameters is
stored.
The name rendering includes the method signature. An option to shorten the list of parameters by keeping only types or variable names or using ellipsis may be implemented in the future.
# %% Class method
class ClassMethod(ClassMember):
"""Class member method representation
This class extends `ClassMember` for member methods. It stores additional
method properties (abstract, destructor flag, input parameter types).
"""
def __init__(self, class_method, member_scope):
"""Constructor
The method name and additional properties are extracted from the parsed
header.
* A list of parameter types is stored to retain the function signature.
* The ``~`` character is appended to destructor methods.
* ``const`` methods are flagged with the ``query`` property.
Parameters
----------
class_method : CppMethod
Parsed class member method
member_scope : str
Scope of the member method
"""
assert(isinstance(class_method,
CppHeaderParser.CppHeaderParser.CppMethod))
super().__init__(class_method, member_scope)
self._type = _cleanup_type(class_method['returns'])
if class_method['returns_pointer']:
self._type += '*'
elif class_method['returns_reference']:
self._type += '&'
self._abstract = class_method['pure_virtual']
if class_method['destructor']:
self._name = '~' + self._name
if class_method['const']:
self._properties.append('query')
self._param_list = []
for param in class_method['parameters']:
self._param_list.append([_cleanup_type(param['type']),
param['name']])
def _render_name(self):
"""Internal rendering of method name
This method extends the base :func:`ClassMember._render_name` method by
adding the method signature to the returned string.
Returns
-------
str
The method name (prefixed with the ``abstract`` keyword when
appropriate) and signature
"""
assert(not self._static or not self._abstract)
method_str = ('{abstract} ' if self._abstract else '') + \
self._name + '(' + \
', '.join(' '.join(it).strip()
for it in self._param_list) + ')'
return method_str
The Enum
class representing enumeration object is a trivial extension of the
base ~Container~ class. Note that the enumeration elements are rendered without
the actual values.
# %% Enum object
class Enum(Container):
"""Class representing enum objects
This class defines a simple object inherited from the base `Container`
class. It simply lists enumerated values.
"""
def __init__(self, header_enum, parent=None):
"""Constructor
Parameters
----------
header_enum : CppEnum
Parsed CppEnum object
"""
super().__init__('enum', header_enum.get('name', 'empty'))
self.parse_members(header_enum)
if parent:
self._parent = parent
def _do_parse_members(self, header_enum):
"""Extract enum values from header
Parameters
----------
header_enum : CppEnum
Parsed `CppEnum` object
"""
for value in header_enum.get('values', []):
self._member_list.append(EnumValue(value['name']))
class EnumValue(ContainerMember):
"""Class representing values in enum object
This class only contains the name of the enum value (the actual integer
value is ignored).
"""
def __init__(self, header_value, **kwargs):
"""Constructor
Parameters
----------
header_value : str
Name of enum member
"""
super().__init__(header_value)
def render(self):
"""Rendering to string
This method simply returns the variable name
Returns
-------
str
The enumeration element name
"""
return self._name
C++ namespaces are represented by the Namespace
class. It simply contains a
list of objects and wraps the objects in a namespace
block on rendering.
# %% Class object
class Namespace(list):
"""Representation of C++ namespace
This class lists other containers or namespaces and wraps the rendered
output in a ``namespace`` block.
"""
def __init__(self, name, *args):
"""Constructor
Parameters
----------
name : str
Namespace name
"""
self._name = name
super().__init__(*args)
def render(self):
"""Render namespace content
Render the elements and wrap the result in a ``namespace`` block
Returns
-------
str
String representation of namespace in PlantUML syntax
"""
if self._name:
name = self._name.split('::')[-1]
else:
name = self._name
return wrap_namespace('\n'.join([c.render()
for c in self]), name)
The current version only supports inheritance and aggregation relationships. No attempt is made to differentiate between composition and aggregation relationships from the code; instead, an object having a member of a type defined by another class is assumed to correspond to an aggregation relationship.
The base ClassRelationship
class defines the common properties of class
relationships: a parent, a child and a connection type. All are saved as
strings and the text representation of a connection link is obtained from the
~CONTAINER_TYPE_MAP~ constant.
# %% Class connections
class ClassRelationship(object):
"""Base object for class relationships
This class defines the common structure of class relationship objects.
This includes a parent/child pair and a relationship type (e.g. inheritance
or aggregation).
"""
def __init__(self, link_type, c_parent, c_child):
"""Constructor
Parameters
----------
link_type : str
Relationship type: ``inherit`` or ``aggregation``
c_parent : Container
Parent container
c_child : Container
Child container
"""
self._parent = c_parent.name
self._child = c_child.name
self._link_type = link_type
self._parent_namespace = c_parent._namespace or ''
self._child_namespace = c_child._namespace or ''
def comparison_keys(self):
"""Order comparison key between `ClassRelationship` objects
Compare alphabetically based on the parent name, the child name then
the link type.
Returns
-------
list
`operator.attrgetter` objects for successive fields used as keys
"""
return self._parent, self._child, self._link_type
def _render_name(self, class_name, class_namespace):
"""Render class name with namespace prefix if necessary
Parameters
----------
class_name : str
Name of the class
class_namespace : str
Namespace or None if the class is defined in the default namespace
Returns
-------
str
Class name with appropriate prefix for use with link rendering
"""
return get_namespace_link_name(class_namespace) + '.' + class_name
def render(self):
"""Render class relationship to string
This method generically appends the parent name, a rendering of the
link type (obtained from the :func:`_render_link_type` method) and the
child object name.
Returns
-------
str
The string representation of the class relationship following the
PlantUML syntax
"""
link_str = ''
# Prepend the namespace to the class name
parent_str = self._render_name(self._parent, self._parent_namespace)
child_str = self._render_name(self._child, self._child_namespace)
# Link string
link_str += (parent_str + ' ' + self._render_link_type() + ' ' +
child_str + '\n')
return link_str
def _render_link_type(self):
"""Internal representation of link
The string representation is obtained from the `LINK_TYPE_MAP`
constant.
Returns
-------
str
The link between parent and child following the PlantUML syntax
"""
return LINK_TYPE_MAP[self._link_type]
The inheritance relationship is a straightforward specialization of the base
ClassRelationship
class: it simply forces the link type to be the string
“inherit”.
# %% Class inheritance
class ClassInheritanceRelationship(ClassRelationship):
"""Representation of inheritance relationships
This module extends the base `ClassRelationship` class by setting the link
type to ``inherit``.
"""
def __init__(self, c_parent, c_child, **kwargs):
"""Constructor
Parameters
----------
c_parent : str
Parent class
c_child : str
Derived class
kwargs : dict
Additional parameters passed to parent class
"""
super().__init__('inherit', c_parent, c_child, **kwargs)
The aggregation relationship specializes the base ClassRelationship
class by
using the “aggregation” or “composition” link type and adding a count
field
used to add a label with the number of instances of the parent class in the
PlantUML diagram (the count is omitted when equal to one). The difference
between aggregation and composition is mainly in the ownership of the member
variable. A raw pointer is interpreted as an aggregation relationship while any
other container is interpreted as a composition relationship.
# %% Class aggregation
class ClassAggregationRelationship(ClassRelationship):
"""Representation of aggregation relationships
This module extends the base `ClassRelationship` class by setting the link
type to ``aggregation``. It also keeps a count of aggregation, which is
displayed near the arrow when using PlantUML.
Aggregation relationships are simplified to represent the presence of a
variable type (possibly within a container such as a list) in a class
definition.
"""
def __init__(self, c_object, c_container, c_count=1,
rel_type='aggregation', **kwargs):
"""Constructor
Parameters
----------
c_object : str
Class corresponding to the type of the member variable in the
aggregation relationship
c_container : str
Child (or client) class of the aggregation relationship
c_count : int
The number of members of ``c_container`` that are of type (possibly
through containers) ``c_object``
rel_type : str
Relationship type: ``aggregation`` or ``composition``
kwargs : dict
Additional parameters passed to parent class
"""
super().__init__(rel_type, c_object, c_container, **kwargs)
self._count = c_count
def _render_link_type(self):
"""Internal link rendering
This method overrides the default link rendering defined in
:func:`ClassRelationship._render_link_type` to include a count near the
end of the arrow.
"""
count_str = '' if self._count == 1 else '"%d" ' % self._count
return count_str + LINK_TYPE_MAP[self._link_type]
The dependency relationship is not directly extracted from C++ code, but it can
be manipulated when using the Diagram
object. In PlantUML, it corresponds to
the <..
link type (http://plantuml.com/class-diagram).
# %% Class dependency
class ClassDependencyRelationship(ClassRelationship):
"""Dependency relationship
Dependencies occur when member methods depend on an object of another class
in the diagram.
"""
def __init__(self, c_parent, c_child, **kwargs):
"""Constructor
Parameters
----------
c_parent : str
Class corresponding to the type of the member variable in the
dependency relationship
c_child : str
Child (or client) class of the dependency relationship
kwargs : dict
Additional parameters passed to parent class
"""
super().__init__('dependency', c_parent, c_child, **kwargs)
The nesting relationship handles nested objects (classes, enums). In PlantUML,
it corresponds to the +..
link type (http://plantuml.com/class-diagram).
# %% Nested class
class ClassNestingRelationship(ClassRelationship):
"""Nesting relationship
Dependencies occur when member methods depend on an object of another class
in the diagram.
"""
def __init__(self, c_parent, c_child, **kwargs):
"""Constructor
Parameters
----------
c_parent : str
Class corresponding to the type of the member variable in the
nesting relationship
c_child : str
Child (or client) class of the dependency relationship
kwargs : dict
Additional parameters passed to parent class
"""
super().__init__('nesting', c_parent, c_child, **kwargs)
The Diagram
object is the main interface between the C++ code and the PlantUML
program. It contains a list of objects parsed from the header files, maintains
lists of relationships and provides rendering facilities to produce a string
ready to process by PlantUML.
An example use case for the Diagram
class could be:
# Create object
diag = Diagram()
# Initialize from filename
diag.create_from_file(filename)
# Get output string following PlantUML syntax
output_string = diag.render()
The interface methods and their behavior are summarized in Table{{{tt}}}tbl-diagram-interface.
Method name | input type | input list? | reset? | sort? | build lists? |
---|---|---|---|---|---|
create_from_file | file | no | yes | yes | yes |
create_from_file_list | file | yes | yes | yes | yes |
add_from_file | file | no | no | no | no |
add_from_file_list | file | yes | no | no | no |
create_from_string | string | no | yes | yes | yes |
create_from_string_list | string | yes | yes | yes | yes |
add_from_string | string | no | no | no | no |
add_from_string_list | string | yes | no | no | no |
Functionally, parsing of the C++ headers is left to the CppHeaderParser
module, the output of which is parsed into internal objects using Container
parsers. The main functionality of the Diagram
class consists in building the
relationship lists between classes. The assumption is that for a link to be
stored, it must be between two objects present in the Diagram
object (no
relationships with external classes).
To build the inheritance list, the objects are browsed and
ClassInheritanceRelationship
instances are added to the list whenever the
parent class is defined within the Diagram
object.
Construction of the list of aggregation links is slightly more complex. A first
run through the object extracts all the member types for Class
objects. Next
a list of (type, count) pairs is constructed for members of types defined within
the Diagram
object. Finally, the list is used to instantiate
ClassAggregationRelationship
objects stored in a list.
The rendering function builds a string containing the PlantUML preamble and
postamble text for diagrams (@startuml
, @enduml
), the rendered text for each
object and the rendered relationship links.
In order to ensure that the rendering is reproducible, a sorting mechanism has
been implemented for objects, members and relationships. Objects and object
members are sorted by type and name and relationships are sorted by parent name,
child name and link type if necessary. The add_from_*
interface methods can
be used to avoid this sorting step.
# %% Diagram class
class Diagram(object):
"""UML diagram object
This class lists the objects in the set of files considered, and the
relationships between object.
The main interface to the `Diagram` object is via the ``create_*`` and
``add_*`` methods. The former parses objects and builds relationship lists
between the different parsed objects. The latter only parses objects and
does not builds relationship lists.
Each method has versions for file and string inputs and folder string lists
and file lists inputs.
"""
def __init__(self, template_file=None, flag_dep=False):
"""Constructor
The `Diagram` class constructor simply initializes object lists. It
does not create objects or relationships.
"""
self._flag_dep = flag_dep
self.clear()
loader_list = []
if template_file is not None:
loader_list.append(jinja2.FileSystemLoader(
os.path.abspath(os.path.dirname(template_file))))
self._template_file = os.path.basename(template_file)
else:
self._template_file = 'default.puml'
loader_list.append(jinja2.PackageLoader('hpp2plantuml', 'templates'))
self._env = jinja2.Environment(loader=jinja2.ChoiceLoader(
loader_list), keep_trailing_newline=True)
def clear(self):
"""Reinitialize object"""
self._objects = []
self._inheritance_list = []
self._aggregation_list = []
self._dependency_list = []
self._nesting_list = []
def _sort_list(input_list):
"""Sort list using `ClassRelationship` comparison
Parameters
----------
input_list : list(ClassRelationship)
Sort list using the :func:`ClassRelationship.comparison_keys`
comparison function
"""
input_list.sort(key=lambda obj: obj.comparison_keys())
def sort_elements(self):
"""Sort elements in diagram
Sort the objects and relationship links. Objects are sorted using the
:func:`Container.comparison_keys` comparison function and list are
sorted using the `_sort_list` helper function.
"""
self._objects.sort(key=lambda obj: obj.comparison_keys())
for obj in self._objects:
obj.sort_members()
Diagram._sort_list(self._inheritance_list)
Diagram._sort_list(self._aggregation_list)
Diagram._sort_list(self._dependency_list)
Diagram._sort_list(self._nesting_list)
def _build_helper(self, data_in, build_from='string', flag_build_lists=True,
flag_reset=False):
"""Helper function to initialize a `Diagram` object from parsed headers
Parameters
----------
data_in : CppHeader or str or list(CppHeader) or list(str)
Input of arbitrary type. The processing depends on the
``build_from`` parameter
build_from : str
Determines the type of the ``data_in`` variable:
* ``string``: ``data_in`` is a string containing C++ header code
* ``file``: ``data_in`` is a filename to parse
* ``string_list``: ``data_in`` is a list of strings containing C++
header code
* ``file_list``: ``data_in`` is a list of filenames to parse
flag_build_lists : bool
When True, relationships lists are built and the objects in the
diagram are sorted, otherwise, only object parsing is performed
flag_reset : bool
If True, the object is initialized (objects and relationship lists
are cleared) prior to parsing objects, otherwise, new objects are
appended to the list of existing ones
"""
if flag_reset:
self.clear()
if build_from in ('string', 'file'):
self.parse_objects(data_in, build_from)
elif build_from in ('string_list', 'file_list'):
build_from_single = re.sub('_list$', '', build_from)
for single_input in data_in:
self.parse_objects(single_input, build_from_single)
if flag_build_lists:
self.build_relationship_lists()
self.sort_elements()
def create_from_file(self, header_file):
"""Initialize `Diagram` object from header file
Wrapper around the :func:`_build_helper` function, with ``file`` input,
building the relationship lists and with object reset.
"""
self._build_helper(header_file, build_from='file',
flag_build_lists=True, flag_reset=True)
def create_from_file_list(self, file_list):
"""Initialize `Diagram` object from list of header files
Wrapper around the :func:`_build_helper` function, with ``file_list``
input, building the relationship lists and with object reset.
"""
self._build_helper(file_list, build_from='file_list',
flag_build_lists=True, flag_reset=True)
def add_from_file(self, header_file):
"""Augment `Diagram` object from header file
Wrapper around the :func:`_build_helper` function, with ``file`` input,
skipping building of the relationship lists and without object reset
(new objects are added to the object).
"""
self._build_helper(header_file, build_from='file',
flag_build_lists=False, flag_reset=False)
def add_from_file_list(self, file_list):
"""Augment `Diagram` object from list of header files
Wrapper around the :func:`_build_helper` function, with ``file_list``
input, skipping building of the relationship lists and without object
reset (new objects are added to the object).
"""
self._build_helper(file_list, build_from='file_list',
flag_build_lists=False, flag_reset=False)
def create_from_string(self, header_string):
"""Initialize `Diagram` object from header string
Wrapper around the :func:`_build_helper` function, with ``string``
input, building the relationship lists and with object reset.
"""
self._build_helper(header_string, build_from='string',
flag_build_lists=True, flag_reset=True)
def create_from_string_list(self, string_list):
"""Initialize `Diagram` object from list of header strings
Wrapper around the :func:`_build_helper` function, with ``string_list``
input, skipping building of the relationship lists and with object
reset.
"""
self._build_helper(string_list, build_from='string_list',
flag_build_lists=True, flag_reset=True)
def add_from_string(self, header_string):
"""Augment `Diagram` object from header string
Wrapper around the :func:`_build_helper` function, with ``string``
input, skipping building of the relationship lists and without object
reset (new objects are added to the object).
"""
self._build_helper(header_string, build_from='string',
flag_build_lists=False, flag_reset=False)
def add_from_string_list(self, string_list):
"""Augment `Diagram` object from list of header strings
Wrapper around the :func:`_build_helper` function, with ``string_list``
input, building the relationship lists and without object reset (new
objects are added to the object).
"""
self._build_helper(string_list, build_from='string_list',
flag_build_lists=False, flag_reset=False)
def build_relationship_lists(self):
"""Build inheritance and aggregation lists from parsed objects
This method successively calls the :func:`build_inheritance_list` and
:func:`build_aggregation_list` methods.
"""
self.build_inheritance_list()
self.build_aggregation_list()
self.build_nesting_list()
if self._flag_dep:
self.build_dependency_list()
def parse_objects(self, header_file, arg_type='string'):
"""Parse objects
This method parses file of string inputs using the CppHeaderParser
module and extracts internal objects for rendering.
Parameters
----------
header_file : str
A string containing C++ header code or a filename with C++ header
code
arg_type : str
If set to ``string``, ``header_file`` is considered to be a string,
otherwise, it is assumed to be a filename
"""
# Parse header file
parsed_header = CppHeaderParser.CppHeader(header_file,
argType=arg_type)
for container_type, (container_iterator,
container_handler) in CONTAINER_TYPE_MAP.items():
objects = parsed_header.__getattribute__(container_type)
for obj in container_iterator(objects):
# Parse container
obj_c = container_handler(obj)
self._objects.append(obj_c)
# Look for nested enums
# Find value from iterator (may be a tuple)
if isinstance(obj, tuple) and len(obj) == 2:
obj_n = obj[-1]
else:
obj_n = obj
if 'enums' in obj_n:
for m in MEMBER_PROP_MAP.keys():
for enum in obj_n['enums'][m]:
enum_c = Enum(enum, parent=obj_c.name)
# Adjust name to reflect nesting
enum_c._name = obj_c.name + '::' + enum_c._name
self._objects.append(enum_c)
def _make_class_list(self):
"""Build list of classes
Returns
-------
list(dict)
Each entry is a dictionary with keys ``name`` (class name) and
``obj`` the instance of the `Class` class
"""
return [{'name': obj.name, 'obj': obj}
for obj in self._objects if isinstance(obj, (Class, Enum))]
def _get_class_list(self):
"""Build list of classes in diagram
Returns
-------
list
Class object list (returned by :func:`_make_class_list`)
list
Class names
bool
True when at least one container is a namespace
"""
class_list_obj = self._make_class_list()
class_list_ns = [(c['obj']._namespace + '::'
if c['obj']._namespace else '') + c['name']
for c in class_list_obj]
class_list = [c['name'] for c in class_list_obj]
return class_list_obj, class_list, class_list_ns
def build_inheritance_list(self):
"""Build list of inheritance between objects
This method lists all the inheritance relationships between objects
contained in the `Diagram` object (external relationships are ignored).
The implementation establishes a list of available classes and loops
over objects to obtain their inheritance. When parent classes are in
the list of available classes, a `ClassInheritanceRelationship` object
is added to the list.
"""
self._inheritance_list = []
# Build list of classes in diagram
class_list_obj, class_list, class_list_ns = self._get_class_list()
# Create relationships
# Inheritance
for obj in self._objects:
obj_name = obj.name
if isinstance(obj, Class):
for parent in obj.build_inheritance_list():
parent_obj = None
if parent in class_list:
parent_obj = class_list_obj[
class_list.index(parent)]['obj']
elif parent in class_list_ns:
parent_obj = class_list_obj[
class_list_ns.index(parent)]['obj']
if parent_obj is not None:
self._inheritance_list.append(
ClassInheritanceRelationship(
parent_obj, obj))
def build_aggregation_list(self):
"""Build list of aggregation relationships
This method loops over objects and finds members with type
corresponding to other classes defined in the `Diagram` object (keeping
a count of occurrences).
The procedure first builds an internal dictionary of relationships
found, augmenting the count using the :func:`_augment_comp` function.
In a second phase, `ClassAggregationRelationship` objects are created
for each relationships, using the calculated count.
"""
self._aggregation_list = []
# Build list of classes in diagram
class_list_obj, class_list, class_list_ns = self._get_class_list()
# Build member type list
variable_type_list = {}
for obj in self._objects:
obj_name = obj.name
if isinstance(obj, Class):
variable_type_list[obj_name] = obj.build_variable_type_list()
# Create aggregation links
aggregation_counts = {}
for child_class in class_list:
if child_class in variable_type_list.keys():
var_types = variable_type_list[child_class]
for var_type in var_types:
for parent in class_list or parent in class_list_ns:
if re.search(r'\b' + parent + r'\b', var_type):
rel_type = 'composition'
if '{}*'.format(parent) in var_type:
rel_type = 'aggregation'
self._augment_comp(aggregation_counts, parent,
child_class, rel_type=rel_type)
for obj_class, obj_comp_list in aggregation_counts.items():
for comp_parent, rel_type, comp_count in obj_comp_list:
if obj_class in class_list:
obj_class_idx = class_list.index(obj_class)
comp_parent_idx = class_list.index(comp_parent)
elif obj_class in class_list_ns:
obj_class_idx = class_list_ns.index(obj_class)
comp_parent_idx = class_list_ns.index(comp_parent)
obj_class_obj = class_list_obj[obj_class_idx]['obj']
comp_parent_obj = class_list_obj[comp_parent_idx]['obj']
self._aggregation_list.append(
ClassAggregationRelationship(
obj_class_obj, comp_parent_obj, comp_count,
rel_type=rel_type))
def build_dependency_list(self):
"""Build list of dependency between objects
This method lists all the dependency relationships between objects
contained in the `Diagram` object (external relationships are ignored).
The implementation establishes a list of available classes and loops
over objects, list their methods adds a dependency relationship when a
method takes an object as input.
"""
self._dependency_list = []
class_list_obj, class_list, class_list_ns = self._get_class_list()
# Create relationships
# Add all objects name to list
objects_name = []
for obj in self._objects:
objects_name.append(obj.name)
# Dependency
for obj in self._objects:
if isinstance(obj, Class):
for member in obj._member_list:
# Check if the member is a method
if isinstance(member, ClassMethod):
for method in member._param_list:
index = ValueError
try:
# Check if the method param type is a Class
# type
index = [re.search(o, method[0]) is not None
for o in objects_name].index(True)
except ValueError:
pass
if index != ValueError and method[0] != obj.name:
depend_obj = self._objects[index]
self._dependency_list.append(
ClassDependencyRelationship(
depend_obj, obj))
def build_nesting_list(self):
"""Build list of nested objects
"""
self._nesting_list = []
# Build list of classes in diagram
class_list_obj, class_list, class_list_ns = self._get_class_list()
for obj in self._objects:
obj_name = obj.name
if isinstance(obj, (Class, Enum)):
parent = obj._parent
parent_obj = None
if parent and parent in class_list:
parent_obj = class_list_obj[
class_list.index(parent)]['obj']
elif parent and parent in class_list_ns:
parent_obj = class_list_obj[
class_list_ns.index(parent)]['obj']
if parent_obj is not None:
self._nesting_list.append(ClassNestingRelationship(
parent_obj, obj))
def _augment_comp(self, c_dict, c_parent, c_child, rel_type='aggregation'):
"""Increment the aggregation reference count
If the aggregation relationship is not in the list (``c_dict``), then
add a new entry with count 1. If the relationship is already in the
list, then increment the count.
Parameters
----------
c_dict : dict
List of aggregation relationships. For each dictionary key, a pair
of (str, int) elements: string and number of occurrences
c_parent : str
Parent class name
c_child : str
Child class name
rel_type : str
Relationship type: ``aggregation`` or ``composition``
"""
if c_child not in c_dict:
c_dict[c_child] = [[c_parent, rel_type, 1], ]
else:
parent_list = [c[:2] for c in c_dict[c_child]]
if [c_parent, rel_type] not in parent_list:
c_dict[c_child].append([c_parent, rel_type, 1])
else:
c_idx = parent_list.index([c_parent, rel_type])
c_dict[c_child][c_idx][2] += 1
def render(self):
"""Render full UML diagram
The string returned by this function should be ready to use with the
PlantUML program. It includes all the parsed objects with their
members, and the inheritance and aggregation relationships extracted
from the list of objects.
Returns
-------
str
String containing the full string representation of the `Diagram`
object, including objects and object relationships
"""
template = self._env.get_template(self._template_file)
# List namespaces
ns_list_in = []
for obj in self._objects:
if obj._namespace and obj._namespace not in ns_list_in:
ns_list_in.append(obj._namespace)
# Add empty namespaces
ns_list = []
for ns in ns_list_in:
ns_list.append(ns)
ns_split = ns.split('::')
for ni in range(1, len(ns_split)):
ns_pre = '::'.join(ns_split[:ni])
if ns_pre not in ns_list_in:
ns_list.append(ns_pre)
# Remove duplicates (#22)
ns_list = list(set(ns_list))
# Ensure nested namespaces are processed first (secondary sort by name)
ns_list = sorted(ns_list, key=lambda ns: (len(ns.split('::')), ns),
reverse=True)
# Create namespace objects (flat map)
ns_obj_map = {ns: Namespace(ns) for ns in ns_list}
# Build list of objects
objects_out = []
# 1. Place objects in namespace container or in output list
for obj in self._objects:
if obj._namespace:
ns_obj_map[obj._namespace].append(obj)
else:
objects_out.append(obj)
# 2. Add namespaces: collapse nested namespaces and add top level
# namespaces to output list
for ns in ns_list:
ns_name_parts = ns.split('::')
if len(ns_name_parts) > 1:
ns_parent = '::'.join(ns_name_parts[:-1])
ns_obj_map[ns_parent].append(ns_obj_map[ns])
else:
objects_out.append(ns_obj_map[ns])
# Render
return template.render(objects=objects_out,
inheritance_list=self._inheritance_list,
aggregation_list=self._aggregation_list,
dependency_list=self._dependency_list,
nesting_list=self._nesting_list,
flag_dep=self._flag_dep)
This section briefly describes the helper functions defined in the module.
The _cleanup_type
function tries to unify the string representation of
variable types by eliminating spaces around *
characters.
# %% Cleanup object type string
def _cleanup_type(type_str):
"""Cleanup string representing a C++ type
Cleanup simply consists in removing spaces before a ``*`` character and
preventing multiple successive spaces in the string.
Parameters
----------
type_str : str
A string representing a C++ type definition
Returns
-------
str
The type string after cleanup
"""
return re.sub('\s*([<>])\s*', r'\1',
re.sub(r'[ ]+([*&])', r'\1',
re.sub(r'(\s)+', r'\1', type_str)))
def _cleanup_namespace(ns_str):
"""Cleanup string representing a C++ namespace
Cleanup simply consists in removing ``<>`` blocks and trailing ``:``
characters.
Parameters
----------
ns_str : str
A string representing a C++ namespace
Returns
-------
str
The namespace string after cleanup
"""
return re.sub(':+$', '',
re.sub('<([^>]+)>', r'\1',
re.sub('(.+)<[^>]+>', r'\1', ns_str)))
The _cleanup_single_line
function transforms a multiline input string into a
single string version.
# %% Single line version of string
def _cleanup_single_line(input_str):
"""Cleanup string representing a C++ type
Remove line returns
Parameters
----------
input_str : str
A string possibly spreading multiple lines
Returns
-------
str
The type string in a single line
"""
return re.sub(r'\s+', ' ', re.sub(r'(\r)?\n', ' ', input_str))
The main interface function accepts wildcards in filenames; they are resolved
using the glob
package. The expand_file_list
function takes as input a list
of filenames and expands wildcards using the glob
command returning a list of
existing filenames without wildcards.
# %% Expand wildcards in file list
def expand_file_list(input_files):
"""Find all files in list (expanding wildcards)
This function uses `glob` to find files matching each string in the input
list.
Parameters
----------
input_files : list(str)
List of strings representing file names and possibly including
wildcards
Returns
-------
list(str)
List of filenames (with wildcards expanded). Each element contains the
name of an existing file
"""
file_list = []
for input_file in input_files:
file_list += glob.glob(input_file, recursive=True)
return file_list
The wrap_namespace
function wraps a rendered PlantUML string in a namespace
block.
def wrap_namespace(input_str, namespace):
"""Wrap string in namespace
Parameters
----------
input_str : str
String containing PlantUML code
namespace : str
Namespace name
Returns
-------
str
``input_str`` wrapped in ``namespace`` block
"""
return 'namespace {} {{\n'.format(namespace) + \
'\n'.join([re.sub('^', '\t', line) if line else line
for line in input_str.splitlines()]) + \
'\n}\n'
def get_namespace_link_name(namespace):
"""Generate namespace string for link
Parameters
----------
namespace : str
Namespace name (in the form ``nested::ns``)
Returns
-------
str
The namespace name formatted for use in links
(e.g. ``nested.nested::ns``)
"""
if not namespace:
return ''
return '.'.join(namespace.split('::'))
The CreatePlantUMLFile
function is the main entry point for the module. It
takes as input a list of header files (possibly with wildcards) and an output
filename and converts the input header files into a text file ready for use with
the PlantUML program.
The function creates a Diagram
object, initializes it with the expanded list
of input files and writes the content of the Diagram.render()
method to the
output file.
# %% Main function
def CreatePlantUMLFile(file_list, output_file=None, **diagram_kwargs):
"""Create PlantUML file from list of header files
This function parses a list of C++ header files and generates a file for
use with PlantUML.
Parameters
----------
file_list : list(str)
List of filenames (possibly, with wildcards resolved with the
:func:`expand_file_list` function)
output_file : str
Name of the output file
diagram_kwargs : dict
Additional parameters passed to :class:`Diagram` constructor
"""
if isinstance(file_list, str):
file_list_c = [file_list, ]
else:
file_list_c = file_list
diag = Diagram(**diagram_kwargs)
diag.create_from_file_list(list(set(expand_file_list(file_list_c))))
diag_render = diag.render()
if output_file is None:
print(diag_render)
else:
with open(output_file, 'wt') as fid:
fid.write(diag_render)
The rendering of the PlantUML file is managed by a =jinja= template. The default template is as follows:
@startuml
{% block preamble %}
{% endblock %}
{% block objects %}
/' Objects '/
{% for object in objects %}
{{ object.render() }}
{% endfor %}
{% endblock %}
{% block inheritance %}
/' Inheritance relationships '/
{% for link in inheritance_list %}
{{ link.render() }}
{% endfor %}
{% endblock %}
{% block aggregation %}
/' Aggregation relationships '/
{% for link in aggregation_list %}
{{ link.render() }}
{% endfor %}
{% endblock %}
{% if flag_dep %}
{% block dependency %}
/' Dependency relationships '/
{% for link in dependency_list %}
{{ link.render() }}
{% endfor %}
{% endblock %}
{% endif %}
{% block nested %}
/' Nested objects '/
{% for link in nesting_list %}
{{ link.render() }}
{% endfor %}
{% endblock %}
@enduml
The template successively prints the following blocks
preamble
- Empty by default, can be used to insert a title and PlantUML
skinparam
options objects
- Classes, structs and enum objects
inheritance
- Inheritance links
aggregation
- Aggregation links
The ~main~ function provides a minimal command line interface using argparse
to parse input arguments. The function passes the command line arguments to the
~CreatePlantUMLFile~ function.
# %% Command line interface
def main():(ref:module-main)
"""Command line interface
This function is a command-line interface to the
:func:`hpp2plantuml.CreatePlantUMLFile` function.
Arguments are read from the command-line, run with ``--help`` for help.
"""
parser = argparse.ArgumentParser(description='hpp2plantuml tool.')
parser.add_argument('-i', '--input-file', dest='input_files',
action='append', metavar='HEADER-FILE', required=True,
help='input file (must be quoted' +
' when using wildcards)')
parser.add_argument('-o', '--output-file', dest='output_file',
required=False, default=None, metavar='FILE',
help='output file')
parser.add_argument('-d', '--enable-dependency', dest='flag_dep',
required=False, default=False, action='store_true',
help='Extract dependency relationships from method ' +
'arguments')
parser.add_argument('-t', '--template-file', dest='template_file',
required=False, default=None, metavar='JINJA-FILE',
help='path to jinja2 template file')
parser.add_argument('--version', action='version',
version='%(prog)s ' + <<get-version()>>)
args = parser.parse_args()
if len(args.input_files) > 0:
CreatePlantUMLFile(args.input_files, args.output_file,
template_file=args.template_file,
flag_dep=args.flag_dep)
# %% Standalone mode
if __name__ == '__main__':
main()
The package is available on PyPi and can be installed using pip:
pip install hpp2plantuml
The code uses setuptools
, so it can be built using:
python setup.py install
To build the documentation, run:
python setup.py sphinx
To run the tests, run:
python setup.py test
The hpp2plantuml
package can be used from the command line or as a module in
other applications.
The command line usage is (hpp2plantuml --help
):
usage: hpp2plantuml [-h] -i HEADER-FILE [-o FILE] [-d] [-t JINJA-FILE] [--version] hpp2plantuml tool. optional arguments: -h, --help show this help message and exit -i HEADER-FILE, --input-file HEADER-FILE input file (must be quoted when using wildcards) -o FILE, --output-file FILE output file -d, --enable-dependency Extract dependency relationships from method arguments -t JINJA-FILE, --template-file JINJA-FILE path to jinja2 template file --version show program's version number and exit
Input files are added using the -i
option. Inputs can be full file paths or
include wildcards. Note that double quotes are required when using wildcards.
The output file is selected with the -o
option. The output is a text file
following the PlantUML syntax.
For instance, the following command will generate an input file for PlantUML
(output.puml
) from several header files.
hpp2plantuml -i File_1.hpp -i "include/Helper_*.hpp" -o output.puml
To customize the output PlantUML file, templates can be used (using the -t
parameter):
hpp2plantuml -i File_1.hpp -i "include/Helper_*.hpp" -o output.puml -t template.puml
This will use the template.puml
file as template. Templates follow the jinja
syntax. For instance, to add a preamble to the PlantUML output, the template
file may contain:
{% extends 'default.puml' %} {% block preamble %} title "This is a title" skinparam backgroundColor #EEEBDC skinparam handwritten true {% endblock %}
This will inherit from the default template and override the preamble only.
To use as a module, simply import hpp2plantuml
. The CreatePlantUMLFile
function can then be used to create a PlantUML file from a set of input files.
Alternatively, the Diagram
object can be used directly to build internal
objects (from files or strings). The Diagram.render()
method can be used to
produce a string output instead of writing to a text file. See the API
documentation for more details.
Testing is performed using the nose framework. The tests are defined in the
test_hpp2plantuml.py
file located in the test folder. They can be run with
the python setup.py test
command.
Two types of tests are considered: small scale tests for individual components, which are defined in org-tables (C++ source/reference output pairs) and tests on a large input header file.
For the tests stored in org-tables, the pipe character “|” being a special character in org-mode, it is replaced by “@” in the tables and fixed in python.
Following is the test setup code.
"""Test module for hpp2plantuml"""
# %% Imports
import os
import io
import sys
import re
import nose.tools as nt
import CppHeaderParser
import hpp2plantuml
test_fold = os.path.abspath(os.path.dirname(__file__))
# %% Helper functions
def get_parsed_element(input_str):
return CppHeaderParser.CppHeader(input_str, argType='string')
@nt.nottest
def fix_test_list_def(test_list):
test_list_out = []
for test_entry in test_list:
test_entry_out = []
for test_str in test_entry:
test_entry_out.append(re.sub(u'@', '|', test_str))
test_list_out.append(test_entry_out)
return test_list_out
The module tests are not strictly speaking unit tests, as they rely on parsing of a header file, but they aim at evaluating simple functionality of the different modules implemented.
The test for the Container
class tests elementary functionality: members and
sorting keys.
# %% Test containers
class TestContainer:
def test_init(self):
c_type = "container_type"
c_name = "container_name"
c_obj = hpp2plantuml.hpp2plantuml.Container(c_type, c_name)
nt.assert_equal(c_obj.name, c_name)
nt.assert_equal(c_obj.render(), 'container_type container_name {\n}\n')
def test_comparison_keys(self):
c_list = [
['class', 'ABD'],
['enum', 'ABDa'],
['class', 'abcd'],
]
ref_sort_idx = [0, 2, 1]
c_obj_list = []
for c_type, c_name in c_list:
c_obj_list.append(hpp2plantuml.hpp2plantuml.Container(
c_type, c_name))
c_obj_list.sort(key=lambda obj: obj.comparison_keys())
for i in range(len(c_list)):
nt.assert_equal(c_obj_list[i].name,
c_list[ref_sort_idx[i]][1])
Testing for classes is performed by parsing minimal C++ code segments and comparing the rendered text to a reference. The input/output pairs are stored in an org-table and tangled to test files. Adding tests should be as simple as adding rows to the table, with the constraint that each test should be contained in a single row of the table.
Class variables have simple functionality (name, type and scope). The following table (Table{{{tt}}}tbl-unittest-class_var) defines tests that validate the representation of variables.
C++ | plantuml |
---|---|
“class Test {\npublic:\nint member; };” | “+member : int” |
“class Test {\nprivate:\nint * member; };” | “-member : int*” |
“class Test {\nprotected:\nint &member; };” | “#member : int&” |
# %% Test class variables
class TestClassVariable:
def test_list_entries(self):
for test_idx, (input_str, output_ref_str) in \
enumerate(fix_test_list_def(test_list_classvar)):
p = get_parsed_element(input_str)
class_name = re.sub(r'.*(class|struct)\s*(\w+).*', r'\2',
input_str.replace('\n', ' '))
class_input = [class_name, p.classes[class_name]]
obj_c = hpp2plantuml.hpp2plantuml.Class(class_input)
obj_m = obj_c._member_list[0]
nt.assert_equal(output_ref_str, obj_m.render(),
'Test {0} failed [input: {1}]'.format(test_idx,
input_str))
The tests for class methods are listed in Table{{{tt}}}tbl-unittest-class_method. Note that template methods are not supported by PlantUML.
C++ | plantuml |
---|---|
“class Test {\npublic:\nint & func(int * a); };” | “+func(int* a) : int&” |
“class Test {\npublic:\nstatic int func(int & a); };” | ”+{static} func(int& a) : int” |
“class Test {\nprivate:\nvirtual int * func() const = 0; };” | ”-{abstract} func() : int* {query}” |
“class Test {\npublic:\n~Test(); };” | ”+~Test()” |
“class Test {\nprotected:\ntemplate <typename T>int &func(string &) const; };” | “#func(string &) : int& {query}” |
# %% Test class methods
class TestClassMethod:
def test_list_entries(self):
for test_idx, (input_str, output_ref_str) in \
enumerate(fix_test_list_def(test_list_classmethod)):
p = get_parsed_element(input_str)
class_name = re.sub(r'.*(class|struct)\s*(\w+).*', r'\2',
input_str.replace('\n', ' '))
class_input = [class_name, p.classes[class_name]]
obj_c = hpp2plantuml.hpp2plantuml.Class(class_input)
obj_m = obj_c._member_list[0]
nt.assert_equal(output_ref_str, obj_m.render(),
'Test {0} failed [input: {1}]'.format(test_idx,
input_str))
The unit test for classes includes rendering tests for the code segments in Table{{{tt}}}tbl-unittest-class. It includes templates and abstract classes.
C++ | plantuml |
---|---|
“class Test {\nprotected:\nint & member; };” | “class Test {\n\t#member : int&\n}\n” |
“struct Test {\nprotected:\nint & member; };” | “class Test {\n\t#member : int&\n}\n” |
“class Test\n{\npublic:\nvirtual int func() = 0; };” | “abstract class Test {\n\t+{abstract} func() : int\n}\n” |
“template <typename T> class Test{\nT* func(T& arg); };” | “class Test <template<typename T>> {\n\t-func(T& arg) : T*\n}\n” |
“template <typename T> class Test{\nvirtual T* func(T& arg)=0; };” | “abstract class Test <template<typename T>> {\n\t-{abstract} func(T& arg) : T*\n}\n” |
“namespace Interface {\nclass Test {\nprotected:\nint & member; };};” | “class Test {\n\t#member : int&\n}\n” |
# %% Test classes
class TestClass:
def test_list_entries(self):
for test_idx, (input_str, output_ref_str) in \
enumerate(fix_test_list_def(test_list_class)):
p = get_parsed_element(input_str)
class_name = re.sub(r'.*(class|struct)\s*(\w+).*', r'\2',
input_str.replace('\n', ' '))
class_input = [class_name, p.classes[class_name]]
obj_c = hpp2plantuml.hpp2plantuml.Class(class_input)
nt.assert_equal(output_ref_str, obj_c.render(),
'Test {0} failed [input: {1}]'.format(test_idx,
input_str))
The unit test for enum objects includes rendering tests for the code segments in Table{{{tt}}}tbl-unittest-enum.
C++ | plantuml |
---|---|
“enum Test { A, B, CD, E };” | “enum Test {\n\tA\n\tB\n\tCD\n\tE\n}\n” |
“enum Test\n{\n A = 0, B = 12\n };” | “enum Test {\n\tA\n\tB\n}\n” |
“enum { A, B };” | “enum empty {\n\tA\n\tB\n}\n”” |
# %% Test enum objects
class TestEnum:
def test_list_entries(self):
for test_idx, (input_str, output_ref_str) in \
enumerate(fix_test_list_def(test_list_enum)):
p = get_parsed_element(input_str)
enum_name = re.sub(r'.*enum\s*(\w+).*', r'\1',
input_str.replace('\n', ' '))
enum_input = p.enums[0]
obj_c = hpp2plantuml.hpp2plantuml.Enum(enum_input)
nt.assert_equal(output_ref_str, obj_c.render(),
'Test {0} failed [input: {1}]'.format(test_idx,
input_str))
The unit test for link objects includes rendering tests for the code segments in Table{{{tt}}}tbl-unittest-link. It tests inheritance and aggregation relationships (with and without count).
C++ | plantuml |
---|---|
“class A{};\nclass B : A{};” | “.A <@– .B\n” |
“class A{};\nclass B : public A{};” | “.A <@– .B\n” |
“class B{};\nclass A{B obj;};” | “.A *– .B\n” |
“class B{};\nclass A{B* obj;};” | “.A o– .B\n” |
“class B{};\nclass A{B * obj_ptr; B* ptr;};” | “.A "2" o– .B\n” |
“class A{};\nclass B{void Method(A* obj);};” | “.A <.. .B\n” |
“namespace T {class A{}; class B: A{};};” | “T.A <@– T.B\n” |
“namespace T {\nclass A{};};\nclass B{T::A* _obj;};” | “.B o– T.A\n” |
class TestLink:
def test_list_entries(self):
for test_idx, (input_str, output_ref_str) in \
enumerate(fix_test_list_def(test_list_link)):
obj_d = hpp2plantuml.Diagram(flag_dep=True)
# Not very unittest-y
obj_d.create_from_string(input_str)
if len(obj_d._inheritance_list) > 0:
obj_l = obj_d._inheritance_list[0]
elif len(obj_d._aggregation_list) > 0:
obj_l = obj_d._aggregation_list[0]
elif len(obj_d._dependency_list) > 0:
obj_l = obj_d._dependency_list[0]
nt.assert_equal(output_ref_str, obj_l.render(),
'Test {0} failed [input: {1}]'.format(test_idx,
input_str))
The system test uses example header files and validates the PlantUML string rendering compared to a saved reference.
The header is split into two files, in order to test the ability to load multiple inputs. It contains a mix of abstract, template classes with members of different scope and with different properties (static, abstract methods, etc.).
The following can be extended to improve testing, as long as the corresponding reference output is kept up-to-date.
enum Enum01 { VALUE_0, VALUE_1, VALUE_2 };
class Class01 {
protected:
int _protected_var;
bool _ProtectedMethod(int param);
static bool _StaticProtectedMethod(bool param);
virtual bool _AbstractMethod(int param) = 0;
public:
Class01& operator=(const Class01&) & = delete;
int public_var;
bool PublicMethod(int param) const;
static bool StaticPublicMethod(bool param);
virtual bool AbstractPublicMethod(int param) = 0;
};
class Class02 : public Class01 {
public:
bool AbstractPublicMethod(int param) override;
private:
class ClassNested {
int var;
};
int _private_var;
template <typename T>
bool _PrivateMethod(T param);
static bool _StaticPrivateMethod(bool param);
bool _AbstractMethod(int param) override;
};
template<typename T>
class Class03 : public first_ns::second_ns::A {
public:
Class03();
~Class03();
void Method(Interface::Class04& c4);
private:
Class01* _obj;
Class01* _data;
list<Class02> _obj_list;
T* _typed_obj;
};
namespace Interface {
class Class04 {
public:
Class04();
~Class04();
private:
bool _flag;
Class01* _obj;
T _var;
Enum01 _val;
};
class Class04_derived : public Class04 {
public:
Class04_derived();
~Class04_derived();
private:
int _var;
};
struct Struct {
int a;
};
enum Enum { A, B };
namespace NestedNamespace {
class Class04_ns : private Class04_derived {
protected:
Struct _s;
Enum _e;
};
};
};
// Anonymous union (issue #9)
union {
struct {
float x;
float y;
float z;
};
struct {
float rho;
float theta;
float phi;
};
float vec[3];
};
// Empty parent namespace (issue #13)
namespace first_ns::second_ns{
class A : public Class02 {};
}
Following is the reference output for the input header files defined earlier. The comparison takes into account the white space, indentation, etc.
@startuml
/' Objects '/
abstract class Class01 {
+{abstract} AbstractPublicMethod(int param) : bool
+PublicMethod(int param) : bool {query}
+{static} StaticPublicMethod(bool param) : bool
#{abstract} _AbstractMethod(int param) : bool
#_ProtectedMethod(int param) : bool
#{static} _StaticProtectedMethod(bool param) : bool
#_protected_var : int
+public_var : int
}
class Class02 {
+AbstractPublicMethod(int param) : bool
-_AbstractMethod(int param) : bool
-_PrivateMethod(T param) : bool
-{static} _StaticPrivateMethod(bool param) : bool
-_private_var : int
}
class Class02::ClassNested {
-var : int
}
class Class03 <template<typename T>> {
+Class03()
+~Class03()
-_data : Class01*
-_obj : Class01*
-_typed_obj : T*
-_obj_list : list<Class02>
+Method(Interface::Class04& c4) : void
}
enum Enum01 {
VALUE_0
VALUE_1
VALUE_2
}
class anon_union_1::anon_struct_1 {
+x : float
+y : float
+z : float
}
class anon_union_1::anon_struct_2 {
+phi : float
+rho : float
+theta : float
}
class anon_union_1 {
+vec : float
}
namespace first_ns {
namespace second_ns {
class A {
}
}
}
namespace Interface {
class Class04 {
+Class04()
+~Class04()
-_obj : Class01*
-_val : Enum01
-_var : T
-_flag : bool
}
class Class04_derived {
+Class04_derived()
+~Class04_derived()
-_var : int
}
enum Enum {
A
B
}
class Struct {
+a : int
}
namespace NestedNamespace {
class Class04_ns {
#_e : Enum
#_s : Struct
}
}
}
/' Inheritance relationships '/
first_ns.second_ns.A <|-- .Class03
.Class01 <|-- .Class02
.Class02 <|-- first_ns.second_ns.A
Interface.Class04 <|-- Interface.Class04_derived
Interface.Class04_derived <|-- Interface.NestedNamespace.Class04_ns
/' Aggregation relationships '/
.Class03 "2" o-- .Class01
.Class03 *-- .Class02
Interface.Class04 o-- .Class01
Interface.Class04 *-- .Enum01
Interface.NestedNamespace.Class04_ns *-- Interface.Enum
Interface.NestedNamespace.Class04_ns *-- Interface.Struct
/' Dependency relationships '/
Interface.Class04 <.. .Class03
/' Nested objects '/
.Class02 +-- .Class02::ClassNested
.anon_union_1 +-- .anon_union_1::anon_struct_1
.anon_union_1 +-- .anon_union_1::anon_struct_2
@enduml
@startuml
/' Objects '/
abstract class Class01 {
+{abstract} AbstractPublicMethod(int param) : bool
+PublicMethod(int param) : bool {query}
+{static} StaticPublicMethod(bool param) : bool
#{abstract} _AbstractMethod(int param) : bool
#_ProtectedMethod(int param) : bool
#{static} _StaticProtectedMethod(bool param) : bool
#_protected_var : int
+public_var : int
}
class Class02 {
+AbstractPublicMethod(int param) : bool
-_AbstractMethod(int param) : bool
-_PrivateMethod(T param) : bool
-{static} _StaticPrivateMethod(bool param) : bool
-_private_var : int
}
class Class02::ClassNested {
-var : int
}
class Class03 <template<typename T>> {
+Class03()
+~Class03()
-_data : Class01*
-_obj : Class01*
-_typed_obj : T*
-_obj_list : list<Class02>
+Method(Interface::Class04& c4) : void
}
enum Enum01 {
VALUE_0
VALUE_1
VALUE_2
}
class anon_union_1::anon_struct_1 {
+x : float
+y : float
+z : float
}
class anon_union_1::anon_struct_2 {
+phi : float
+rho : float
+theta : float
}
class anon_union_1 {
+vec : float
}
namespace first_ns {
namespace second_ns {
class A {
}
}
}
namespace Interface {
class Class04 {
+Class04()
+~Class04()
-_obj : Class01*
-_val : Enum01
-_var : T
-_flag : bool
}
class Class04_derived {
+Class04_derived()
+~Class04_derived()
-_var : int
}
enum Enum {
A
B
}
class Struct {
+a : int
}
namespace NestedNamespace {
class Class04_ns {
#_e : Enum
#_s : Struct
}
}
}
/' Inheritance relationships '/
first_ns.second_ns.A <|-- .Class03
.Class01 <|-- .Class02
.Class02 <|-- first_ns.second_ns.A
Interface.Class04 <|-- Interface.Class04_derived
Interface.Class04_derived <|-- Interface.NestedNamespace.Class04_ns
/' Aggregation relationships '/
.Class03 "2" o-- .Class01
.Class03 *-- .Class02
Interface.Class04 o-- .Class01
Interface.Class04 *-- .Enum01
Interface.NestedNamespace.Class04_ns *-- Interface.Enum
Interface.NestedNamespace.Class04_ns *-- Interface.Struct
/' Nested objects '/
.Class02 +-- .Class02::ClassNested
.anon_union_1 +-- .anon_union_1::anon_struct_1
.anon_union_1 +-- .anon_union_1::anon_struct_2
@enduml
The system test validates the following:
- input from multiple files, with and without wildcards,
- interfaces to the
Diagram
class listed in Table{{{tt}}}tbl-diagram-interface, - object reset,
- the
CreatePlantUMLFile
interface, including stdout and file output. This test also includes a run with custom template.
{% extends 'default.puml' %}
{% block preamble %}
title "This is a title"
skinparam backgroundColor #EEEBDC
skinparam handwritten true
{% endblock %}
# %% Test overall system
class TestFullDiagram():
def __init__(self):
self._input_files = ['simple_classes_1_2.hpp', 'simple_classes_3.hpp']
self._input_files_w = ['simple_classes_*.hpp', 'simple_classes_3.hpp']
self._diag_saved_ref = ''
with open(os.path.join(test_fold, 'simple_classes.puml'), 'rt') as fid:
self._diag_saved_ref = fid.read()
self._diag_saved_ref_nodep = ''
with open(os.path.join(test_fold,
'simple_classes_nodep.puml'), 'rt') as fid:
self._diag_saved_ref_nodep = fid.read()
def test_full_files(self):
self._test_full_files_helper(False)
self._test_full_files_helper(True)
def _test_full_files_helper(self, flag_dep=False):
# Create first version
file_list_ref = list(set(hpp2plantuml.hpp2plantuml.expand_file_list(
[os.path.join(test_fold, f) for f in self._input_files])))
diag_ref = hpp2plantuml.Diagram(flag_dep=flag_dep)
diag_ref.create_from_file_list(file_list_ref)
diag_render_ref = diag_ref.render()
# Compare to saved reference
if flag_dep:
saved_ref = self._diag_saved_ref
else:
saved_ref = self._diag_saved_ref_nodep
nt.assert_equal(saved_ref, diag_render_ref)
# # Validate equivalent inputs
# File expansion
for file_list in [self._input_files, self._input_files_w]:
file_list_c = list(set(hpp2plantuml.hpp2plantuml.expand_file_list(
[os.path.join(test_fold, f) for f in file_list])))
# Create from file list
diag_c = hpp2plantuml.Diagram(flag_dep=flag_dep)
diag_c.create_from_file_list(file_list_c)
nt.assert_equal(diag_render_ref, diag_c.render())
# Add from file list
diag_c_add = hpp2plantuml.Diagram(flag_dep=flag_dep)
diag_c_add.add_from_file_list(file_list_c)
diag_c_add.build_relationship_lists()
diag_c_add.sort_elements()
nt.assert_equal(diag_render_ref, diag_c_add.render())
# Create from first file, add from rest of the list
diag_c_file = hpp2plantuml.Diagram(flag_dep=flag_dep)
diag_c_file.create_from_file(file_list_c[0])
for file_c in file_list_c[1:]:
diag_c_file.add_from_file(file_c)
diag_c_file.build_relationship_lists()
diag_c_file.sort_elements()
nt.assert_equal(diag_render_ref, diag_c_file.render())
# String inputs
input_str_list = []
for file_c in file_list_ref:
with open(file_c, 'rt') as fid:
input_str_list.append(fid.read())
# Create from string list
diag_str_list = hpp2plantuml.Diagram(flag_dep=flag_dep)
diag_str_list.create_from_string_list(input_str_list)
nt.assert_equal(diag_render_ref, diag_str_list.render())
# Add from string list
diag_str_list_add = hpp2plantuml.Diagram(flag_dep=flag_dep)
diag_str_list_add.add_from_string_list(input_str_list)
diag_str_list_add.build_relationship_lists()
diag_str_list_add.sort_elements()
nt.assert_equal(diag_render_ref, diag_str_list_add.render())
# Create from string
diag_str = hpp2plantuml.Diagram(flag_dep=flag_dep)
diag_str.create_from_string('\n'.join(input_str_list))
nt.assert_equal(diag_render_ref, diag_str.render())
# Reset and parse
diag_str.clear()
diag_str.create_from_string('\n'.join(input_str_list))
nt.assert_equal(diag_render_ref, diag_str.render())
# Manually build object
diag_manual_add = hpp2plantuml.Diagram(flag_dep=flag_dep)
for idx, (file_c, string_c) in enumerate(zip(file_list_ref,
input_str_list)):
if idx == 0:
diag_manual_add.add_from_file(file_c)
else:
diag_manual_add.add_from_string(string_c)
diag_manual_add.build_relationship_lists()
diag_manual_add.sort_elements()
nt.assert_equal(diag_render_ref, diag_manual_add.render())
def test_main_function(self):
#self._test_main_function_helper(False)
self._test_main_function_helper(True)
def _test_main_function_helper(self, flag_dep=False):
# List files
file_list = [os.path.join(test_fold, f) for f in self._input_files]
# Output to string
with io.StringIO() as io_stream:
sys.stdout = io_stream
hpp2plantuml.CreatePlantUMLFile(file_list, flag_dep=flag_dep)
io_stream.seek(0)
# Read string output, exclude final line return
output_str = io_stream.read()[:-1]
sys.stdout = sys.__stdout__
if flag_dep:
saved_ref = self._diag_saved_ref
else:
saved_ref = self._diag_saved_ref_nodep
nt.assert_equal(saved_ref, output_str)
# Output to file
output_fname = 'output.puml'
for template in [None, os.path.join(test_fold,
'custom_template.puml')]:
hpp2plantuml.CreatePlantUMLFile(file_list, output_fname,
template_file=template,
flag_dep=flag_dep)
output_fcontent = ''
with open(output_fname, 'rt') as fid:
output_fcontent = fid.read()
if template is None:
# Default template check
nt.assert_equal(saved_ref, output_fcontent)
else:
# Check that all lines of reference are in the output
ref_re = re.search('(@startuml)\s*(.*)', saved_ref, re.DOTALL)
assert ref_re
# Build regular expression: allow arbitrary text between
# @startuml and the rest of the string
ref_groups = ref_re.groups()
match_re = re.compile('\n'.join([
re.escape(ref_groups[0]), # @startuml line
'.*', # preamble
re.escape(ref_groups[1])]), # main output
re.DOTALL)
nt.assert_true(match_re.search(output_fcontent))
os.unlink(output_fname)
In order to distribute and publish the hpp2plantuml module to PyPI, the
setuptools
package was used.
The following guides summarize the packaging process and provide useful examples:
- https://hynek.me/articles/sharing-your-labor-of-love-pypi-quick-and-dirty/
- https://python-packaging.readthedocs.io/en/latest/
- https://packaging.python.org/distributing/
To build, run python setup.py build bdist
, python setup.py build
bdist_wheel
. To upload to PyPI, run:
twine upload -r pypi --sign dist/hpp2plantuml-*
The module’s init file simply defines meta variables required by setuptools
.
It also imports the main interface: the CreatePlantUMLFile
function and the
Diagram
class for use as a module.
The header is filled with the content of org-mode blocks. The version number is obtained using the source block described here.
"""hpp2plantuml module
<<el-org-exp("sec-module", "rst")>>
<<el-org-exp("sec-module-usage", "rst", "keep")>>
"""
__title__ = "hpp2plantuml"
__description__ = "Convert C++ header files to PlantUML"
__version__ = <<get-version()>>
__uri__ = "https://github.com/thibaultmarin/hpp2plantuml"
__doc__ = __description__ + " <" + __uri__ + ">"
__author__ = "Thibault Marin"
__email__ = "[email protected]"
__license__ = "MIT"
__copyright__ = "Copyright (c) 2021 Thibault Marin"
from .hpp2plantuml import CreatePlantUMLFile, Diagram
__all__ = ['CreatePlantUMLFile', 'Diagram']
The setup.cfg
file defines some basic properties of the package. It forces
“universal” wheel builds, sets the license file and defines documentation
commands.
The documentation uses Sphinx to generate the HTML documentation. The
build_sphinx
configuration defines the location for the input and output
documentation files. In practice, the documentation is built using a custom
command for setup.py
run using python setup.py sphinx
.
[bdist_wheel]
universal = 1
[metadata]
license_file = LICENSE
[build_sphinx]
source-dir = doc/source
build-dir = doc/build
all_files = 1
[upload_sphinx]
upload-dir = doc/build/html
The setup.py
file is the interface to setuptools
. It defines the packaging
options. Most of it is taken from this post.
# %% Imports
import os
import sys
import re
import codecs
from setuptools import setup, find_packages, Command
try:
import sphinx
import sphinx.ext.apidoc
import sphinx.cmd.build
except ImportError:
pass
The non-boilerplate part of the setup.py
file defines the package information.
# %% Custom fields
###################################################################
NAME = "hpp2plantuml"
PACKAGES = find_packages(where="src")
META_PATH = os.path.join("src", NAME, "__init__.py")
KEYWORDS = ["class"]
CLASSIFIERS = [
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Natural Language :: English",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
"Programming Language :: Python",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: Implementation :: PyPy",
"Topic :: Software Development :: Libraries :: Python Modules",
]
INSTALL_REQUIRES = <<py-dependencies("requirements")>>
INSTALL_REQUIRES += ['sphinx', ]
SETUP_REQUIRES = ['sphinx', 'numpydoc']
###################################################################
The following helper functions provide tools to extract metadata from the
__init__
file and pass it to the setup
command.
HERE = os.path.abspath(os.path.dirname(__file__))
def read(*parts):
"""
Build an absolute path from *parts* and and return the contents of the
resulting file. Assume UTF-8 encoding.
"""
with codecs.open(os.path.join(HERE, *parts), "rb", "utf-8") as f:
return f.read()
META_FILE = read(META_PATH)
def find_meta(meta):
"""
Extract __*meta*__ from META_FILE.
"""
meta_match = re.search(
r"^__{meta}__ = ['\"]([^'\"]*)['\"]".format(meta=meta),
META_FILE, re.M
)
if meta_match:
return meta_match.group(1)
raise RuntimeError("Unable to find __{meta}__ string.".format(meta=meta))
# %% Sphinx Build
class Sphinx(Command):
user_options = []
description = 'Build sphinx documentation'
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
metadata = self.distribution.metadata
src_dir = (self.distribution.package_dir or {'': ''})['']
src_dir = os.path.join(os.getcwd(), src_dir)
sys.path.append('src')
# Run sphinx by calling the main method, '--full' also adds a
# conf.py
sphinx.ext.apidoc.main(
['--private', '-H', metadata.name,
'-A', metadata.author,
'-V', metadata.version,
'-R', metadata.version,
'-o', os.path.join('doc', 'source'), src_dir]
)
# build the doc sources
sphinx.cmd.build.main([os.path.join('doc', 'source'),
os.path.join('doc', 'build', 'html')])
This final block passes all the relevant package information to setuptools
:
- package information: name, author, license, requirements,
- source code location,
- testing framework,
- console script: the package installs the
hpp2plantuml
command.
if __name__ == "__main__":
setup(
name=NAME,
description=find_meta("description"),
license=find_meta("license"),
url=find_meta("uri"),
version=find_meta("version"),
author=find_meta("author"),
author_email=find_meta("email"),
maintainer=find_meta("author"),
maintainer_email=find_meta("email"),
keywords=KEYWORDS,
long_description=read("README.rst"),
packages=PACKAGES,
package_dir={"": "src"},
package_data={PACKAGES[0]: ['templates/*.puml']},
include_package_data=True,
zip_safe=False,
classifiers=CLASSIFIERS,
install_requires=INSTALL_REQUIRES,
setup_requires=SETUP_REQUIRES,
test_suite='nose.collector',
tests_require=['nose'],
entry_points={
'console_scripts': ['hpp2plantuml=hpp2plantuml.hpp2plantuml:main']
},
cmdclass={'sphinx': Sphinx}(ref:setup-sphinx)
)
The manifest file is used to include extra files to the package.
include *.rst *.txt LICENSE
recursive-include tests *.py
recursive-include tests *.hpp
recursive-include tests *.puml
recursive-include doc *.rst
recursive-include doc *.py
prune doc/build
The README file is automatically generated from blocks defined in this org-file (converted to RST format).
hpp2plantuml - Convert C++ header files to PlantUML
===================================================
<<el-org-exp("sec-intro", "rst")>>
<<el-org-exp("sec-module-usage", "rst", "keep")>>
<<el-org-exp("sec-module-install", "rst", "keep")>>
The full documentation is available via:
- `This org-mode post <https://thibaultmarin.github.io/blog/posts/2016-11-30-hpp2plantuml_-_Convert_C++_header_files_to_PlantUML.html>`_
- `Read the docs <http://hpp2plantuml.readthedocs.io/en/latest/>`_
The module documentation is this org-file, which contains everything from the module code to tests, packaging and documentation.
In order to distribute the package on standard platforms, a RST documentation is
also generated using Sphinx. The setup.py
file contains a custom command
“sphinx” to build the documentation.
The documentation is composed of two parts:
- this org-file is fully exported to RST,
- the
sphinx-api
program is used to generate the module documentation from docstrings in the code.
Sphinx configuration is performed via the conf.py
file. An example
configuration file can be generated using the sphinx-quickstart
command. The
content of the file is mostly following the defaults, with a few exceptions:
- the system path is modified to include the path to the package source code ((sphinx-conf-path)),
- the
numpydoc
package is used to render the docstrings ((sphinx-conf-numpydoc)).
# -*- coding: utf-8 -*-
#
# hpp2plantuml documentation build configuration file, created by
# sphinx-quickstart on Fri Dec 9 13:26:02 2016.
#
# This file is execfile()d with the current directory set to its
# containing dir.
#
# Note that not all possible configuration values are present in this
# autogenerated file.
#
# All configuration values have a default; values that are commented out
# serve to show the default.
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
# sys.path.insert(0, os.path.abspath('.'))
sys.path.insert(0, os.path.abspath("../.."))(ref:sphinx-conf-path)
# Customizations
autoclass_content = 'both'
autodoc_default_flags = ['members', 'undoc-members', 'private-members']
numpydoc_show_class_members = False
# Customizations
autoclass_content = 'both'
autodoc_default_flags = ['members', 'undoc-members', 'private-members']
# -- General configuration ------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
#
# needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.intersphinx',
'sphinx.ext.todo',
'sphinx.ext.coverage',
'sphinx.ext.mathjax',
'sphinx.ext.ifconfig',
'sphinx.ext.viewcode',
'sphinx.ext.autosummary',
'numpydoc'(ref:sphinx-conf-numpydoc)
]
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
#
# source_suffix = ['.rst', '.md']
source_suffix = '.rst'
# The encoding of source files.
#
# source_encoding = 'utf-8-sig'
# The master toctree document.
master_doc = 'index'
# General information about the project.
project = u'hpp2plantuml'
copyright = u'2016, Thibault Marin'
author = u'Thibault Marin'
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
version = u'v' + u<<get-version()>>
# The full version, including alpha/beta/rc tags.
release = u'v' + u<<get-version()>>
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = 'en'
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
#
# today = ''
#
# Else, today_fmt is used as the format for a strftime call.
#
# today_fmt = '%B %d, %Y'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This patterns also effect to html_static_path and html_extra_path
exclude_patterns = []
# The reST default role (used for this markup: `text`) to use for all
# documents.
#
default_role = 'autolink'
# If true, '()' will be appended to :func: etc. cross-reference text.
#
# add_function_parentheses = True
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
#
# add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
#
# show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'
# A list of ignored prefixes for module index sorting.
# modindex_common_prefix = []
# If true, keep warnings as "system message" paragraphs in the built documents.
# keep_warnings = False
# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = True
# -- Options for HTML output ----------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'alabaster'
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
#
# html_theme_options = {}
# Add any paths that contain custom themes here, relative to this directory.
# html_theme_path = []
# The name for this set of Sphinx documents.
# "<project> v<release> documentation" by default.
#
# html_title = u'hpp2plantuml ' + u'v' + u<<get-version()>>
# A shorter title for the navigation bar. Default is the same as html_title.
#
# html_short_title = None
# The name of an image file (relative to this directory) to place at the top
# of the sidebar.
#
# html_logo = None
# The name of an image file (relative to this directory) to use as a favicon of
# the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
# pixels large.
#
# html_favicon = None
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
# Add any extra paths that contain custom files (such as robots.txt or
# .htaccess) here, relative to this directory. These files are copied
# directly to the root of the documentation.
#
# html_extra_path = []
# If not None, a 'Last updated on:' timestamp is inserted at every page
# bottom, using the given strftime format.
# The empty string is equivalent to '%b %d, %Y'.
#
# html_last_updated_fmt = None
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
#
# html_use_smartypants = True
# Custom sidebar templates, maps document names to template names.
#
# html_sidebars = {}
# Additional templates that should be rendered to pages, maps page names to
# template names.
#
# html_additional_pages = {}
# If false, no module index is generated.
#
# html_domain_indices = True
# If false, no index is generated.
#
# html_use_index = True
# If true, the index is split into individual pages for each letter.
#
# html_split_index = False
# If true, links to the reST sources are added to the pages.
#
# html_show_sourcelink = True
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
#
# html_show_sphinx = True
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
#
# html_show_copyright = True
# If true, an OpenSearch description file will be output, and all pages will
# contain a <link> tag referring to it. The value of this option must be the
# base URL from which the finished HTML is served.
#
# html_use_opensearch = ''
# This is the file name suffix for HTML files (e.g. ".xhtml").
# html_file_suffix = None
# Language to be used for generating the HTML full-text search index.
# Sphinx supports the following languages:
# 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja'
# 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr', 'zh'
#
# html_search_language = 'en'
# A dictionary with options for the search language support, empty by default.
# 'ja' uses this config value.
# 'zh' user can custom change `jieba` dictionary path.
#
# html_search_options = {'type': 'default'}
# The name of a javascript file (relative to the configuration directory) that
# implements a search results scorer. If empty, the default will be used.
#
# html_search_scorer = 'scorer.js'
# Output file base name for HTML help builder.
htmlhelp_basename = 'hpp2plantumldoc'
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
#
# 'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
#
# 'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#
# 'preamble': '',
# Latex figure (float) alignment
#
# 'figure_align': 'htbp',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
(master_doc, 'hpp2plantuml.tex', u'hpp2plantuml Documentation',
u'Thibault Marin', 'manual'),
]
# The name of an image file (relative to this directory) to place at the top of
# the title page.
#
# latex_logo = None
# For "manual" documents, if this is true, then toplevel headings are parts,
# not chapters.
#
# latex_use_parts = False
# If true, show page references after internal links.
#
# latex_show_pagerefs = False
# If true, show URL addresses after external links.
#
# latex_show_urls = False
# Documents to append as an appendix to all manuals.
#
# latex_appendices = []
# It false, will not define \strong, \code, itleref, \crossref ... but only
# \sphinxstrong, ..., \sphinxtitleref, ... To help avoid clash with user added
# packages.
#
# latex_keep_old_macro_names = True
# If false, no module index is generated.
#
# latex_domain_indices = True
# -- Options for manual page output ---------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
(master_doc, 'hpp2plantuml', u'hpp2plantuml Documentation',
[author], 1)
]
# If true, show URL addresses after external links.
#
# man_show_urls = False
# -- Options for Texinfo output -------------------------------------------
# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(master_doc, 'hpp2plantuml', u'hpp2plantuml Documentation',
author, 'hpp2plantuml', 'One line description of project.',
'Miscellaneous'),
]
# Documents to append as an appendix to all manuals.
#
# texinfo_appendices = []
# If false, no module index is generated.
#
# texinfo_domain_indices = True
# How to display URL addresses: 'footnote', 'no', or 'inline'.
#
# texinfo_show_urls = 'footnote'
# If true, do not generate a @detailmenu in the "Top" node's menu.
#
# texinfo_no_detailmenu = False
# Example configuration for intersphinx: refer to the Python standard library.
intersphinx_mapping = {'https://docs.python.org/': None}
The index page is the entry point of the documentation. It is formed by other parts of the org document including a brief description of the usage and links to the automatically generated and the org-file documents.
.. hpp2plantuml documentation master file.
hpp2plantuml documentation
==========================
.. toctree::
:maxdepth: 4
<<el-org-exp("sec-intro", "rst")>>
<<el-org-exp("sec-module-usage", "rst", "keep")>>
Module documentation generated from docstrings
----------------------------------------------
:doc:`hpp2plantuml`
Full org-mode package documentation
-----------------------------------
:doc:`org-doc`
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`
In order to build the documentation on the Read The Docs website, a requirement
file is added for the numpydoc
package.
numpydoc
The generation of the package code depends on org-mode, mostly to expand blocks with the =noweb= interface. The following defines helper functions to simplify this process.
The following source block is used to get the module’s version number defined in a single location and include it at multiple locations.
(cond ((string= lang "python")
(format "'%s'" ver)))
The following source block converts the content of an org heading to rst format
using the ~org-rst-convert-region-to-rst~ function. The heading to process is
passed by its CUSTOM_ID property (as a string). In addition, the output
language can be set (although rst is the only instance used in this document)
and an additional flag children
can be used to control whether the subsections
of the target section are removed (children = "remove"
) of kept (any other
string, e.g. "keep"
).
(save-excursion
(let ((org-tree (org-element-parse-buffer)))
(org-element-map
org-tree 'headline
(lambda (r)
(let ((cid (org-element-property :CUSTOM_ID r)))
;; Find desired heading (identified by CUSTOM_ID)
(when (string= cid input)
(when (string= children "remove")
;; Remove all children
(org-element-map (org-element-contents r) 'headline
(lambda (subr)
(org-element-extract-element subr))))
(let ((out-text (org-element-interpret-data r)))
;; Convert to output format
(cond ((string= lang "rst")
(with-temp-buffer
(insert out-text)
(mark-whole-buffer)
(let ((org-export-with-toc nil)
(org-export-with-todo-keywords nil)
(org-export-with-section-numbers nil)
(org-export-with-broken-links t))
(org-rst-convert-region-to-rst))(ref:rst-convert-region)
(buffer-string)))
;; Could support more languages
(t out-text))))))
nil t)))
When generating the rst documentation from this org-file, special handling is
required for source languages known to org but not to rst.. This is performed
using org’s filtering functionality. The ~custom-rst-filter-org-block~ function
defines the filter responsible for post-processing source blocks when exporting
to rst. Its goal is to fix languages unknown to sphinx (which relies on the
pygmentize program for syntax highlighting) such as plantuml
and org’s conf
blocks, replacing them by a simple example block.
(defun custom-rst-filter-org-block (text backend info)(ref:el-rst-filter)
(when (org-export-derived-backend-p backend 'rst)
(let* ((pattern ".*\.\. code:: \\([[:alnum:]]+\\)")
(pattern-line (concat pattern ".*$"))
(lang (progn
(string-match pattern text)
(match-string 1 text))))
(cond ((member lang '("conf" "plantuml"))
(replace-regexp-in-string pattern-line "::\n" text))
(t text)))))
The command and options to generate the org-file documentation in rst format are encapsulated in the following source block.
(require 'ox-rst)
(let ((org-export-with-toc nil)
(org-export-with-todo-keywords nil)
(org-export-with-section-numbers nil)
(org-export-with-broken-links t)
(org-export-filter-src-block-functions
'(custom-rst-filter-org-block)))
(org-export-to-file 'rst "doc/source/org-doc.rst"))
- [-] Add tests
- [ ] Add test coverage report to documentation (full test from within org-mode?)
- [X] Test structs
- [X] Unit tests
- [X] Full diagram test
- [ ] Extra files for package
- [ ] MANIFEST.in?
- [X] Fix export of org blocks
- [X] Code
- [X] Add docstrings
- [X] Add structs
- [X] setup.py
- [X] install doesn’t do anything
- [X] add script to install
- [X] add build doc command
- [X] conf.py (sphinx)
- [X] Include both automatically generated documentation (from docstrings) and org file
- [X] Render org blocks as regular text
- [X] Write elisp function which:
- [X] tangles source files
- [X] creates documentation rst (and README.rst)
- [X] Link to org-mode rst documentation from index.rst -> Use only org-mode rst?
- Fix ignored enums when nested in classes
- Fix missing aggregation link with enums
- Add nesting links
- Refactor namespace support
- Prevent dashes in object name (e.g. anonymous union/structure)
The change of parser (from CppHeaderParser
to robotpy-cppheaderparser
)
results in minor whitespace changes in the rendered plantuml content
(e.g. <template <typename T>>
becomes <template<typename T>>
).
ClassAggregationRelationship(
obj_class_obj, comp_parent_obj, comp_count,
flag_use_namespace=flag_use_namespace))
- The result in v05 is correct
- The naming convention is inconsistent (switch of parent/child arguments)
I would suggest leaving this change out of this pull request.
I believe the current version (v0.5) is producing the correct output:
class Engine {};
class Car{ Engine* engine; };
produces Car o-- Engine
as expected.
However, the current code is misleading/wrong, thanks for pointing that out. I
am passing obj_class_obj
as c_parent
and comp_parent_obj
as c_child
when
instantiating the ClassAggregationRelationship
object. This is wrong and your
change is correct, but the code needs to be further modified to produce the same
output as v0.5. I would propose removing this change and fix that in another
commit (I will take care of that before releasing v0.6).
Thanks for the pull request. It looks good. I have left a few comments and suggestions (mostly nitpicking) for you to look at.
I have a general question about the typical use-case for this change. What c++ code would produce a dependency relationship (could you share an example?)? Are you using the Diagram object directly (without c++ header)?
The only other thing is I’d like to make sure all tests pass and that the new feature is added to the unit tests before merging this.
It should be easy to get this merged. Thanks a lot for your work.