-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathTrain.py
243 lines (174 loc) · 7.4 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import argparse
from tqdm import tqdm
import pandas as pd
import joblib
import glob
from collections import OrderedDict
import torch
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torchvision.transforms as transforms
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from Networks.net import MODEL as net
from losses import ssim_ir, ssim_vi,RMI_ir,RMI_vi
device = torch.device('cuda:0')
use_gpu = torch.cuda.is_available()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--name', default='model name', help='model name: (default: arch+timestamp)')
parser.add_argument('--epochs', default=10, type=int)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float)
parser.add_argument('--weight', default=[1, 1,1,2.5], type=float)
parser.add_argument('--betas', default=(0.9, 0.999), type=tuple)
parser.add_argument('--eps', default=1e-8, type=float)
parser.add_argument('--alpha', default=300, type=int,
help='number of new channel increases per depth (default: 300)')
args = parser.parse_args()
return args
class GetDataset(Dataset):
def __init__(self, imageFolderDataset, transform=None):
self.imageFolderDataset = imageFolderDataset
self.transform = transform
def __getitem__(self, index):
ir = '...'
vi = '...'
ir = Image.open(ir).convert('L')
vi = Image.open(vi).convert('L')
if self.transform is not None:
tran = transforms.ToTensor()
ir=tran(ir)
vi= tran(vi)
input = torch.cat((ir, vi), -3)
return input, ir,vi
def __len__(self):
return len(self.imageFolderDataset)
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def train(args, train_loader_ir,train_loader_vi, model, criterion_ssim_ir, criterion_ssim_vi,criterion_RMI_ir,criterion_RMI_vi,optimizer, epoch, scheduler=None):
losses = AverageMeter()
losses_ssim_ir = AverageMeter()
losses_ssim_vi = AverageMeter()
losses_RMI_ir = AverageMeter()
losses_RMI_vi= AverageMeter()
weight = args.weight
model.train()
for i, (input,ir,vi) in tqdm(enumerate(train_loader_ir), total=len(train_loader_ir)):
if use_gpu:
input = input.cuda()
ir=ir.cuda()
vi=vi.cuda()
else:
input = input
ir=ir
vi=vi
out = model(input)
loss_ssim_ir= weight[0] * criterion_ssim_ir(out, ir)
loss_ssim_vi= weight[1] * criterion_ssim_vi(out, vi)
loss_RMI_ir= weight[2] * criterion_RMI_ir(out,ir)
loss_RMI_vi = weight[3] * criterion_RMI_vi(out,vi)
loss = loss_ssim_ir + loss_ssim_vi+loss_RMI_ir+ loss_RMI_vi
losses.update(loss.item(), input.size(0))
losses_ssim_ir.update(loss_ssim_ir.item(), input.size(0))
losses_ssim_vi.update(loss_ssim_vi.item(), input.size(0))
losses_RMI_ir.update(loss_RMI_ir.item(), input.size(0))
losses_RMI_vi.update(loss_RMI_vi.item(), input.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
log = OrderedDict([
('loss', losses.avg),
('loss_ssim_ir', losses_ssim_ir.avg),
('loss_ssim_vi', losses_ssim_vi.avg),
('loss_RMI_ir', losses_RMI_ir.avg),
('loss_RMI_vi', losses_RMI_vi.avg),
])
return log
def main():
args = parse_args()
if not os.path.exists('models/%s' %args.name):
os.makedirs('models/%s' %args.name)
print('Config -----')
for arg in vars(args):
print('%s: %s' %(arg, getattr(args, arg)))
print('------------')
with open('models/%s/args.txt' %args.name, 'w') as f:
for arg in vars(args):
print('%s: %s' %(arg, getattr(args, arg)), file=f)
joblib.dump(args, 'models/%s/args.pkl' %args.name)
cudnn.benchmark = True
training_dir_ir = ".../"
folder_dataset_train_ir = glob.glob(training_dir_ir )
training_dir_vi = "..../"
folder_dataset_train_vi= glob.glob(training_dir_vi )
transform_train = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))
])
dataset_train_ir = GetDataset(imageFolderDataset=folder_dataset_train_ir,
transform=transform_train)
dataset_train_vi = GetDataset(imageFolderDataset=folder_dataset_train_vi,
transform=transform_train)
train_loader_ir = DataLoader(dataset_train_ir,
shuffle=True,
batch_size=args.batch_size)
train_loader_vi = DataLoader(dataset_train_vi,
shuffle=True,
batch_size=args.batch_size)
model = net(in_channel=2)
if use_gpu:
model = model.cuda()
model.cuda()
else:
model = model
criterion_ssim_ir = ssim_ir
criterion_ssim_vi = ssim_vi
criterion_RMI_ir = RMI_ir
criterion_RMI_vi=RMI_vi
optimizer = optim.Adam(model.parameters(), lr=args.lr,
betas=args.betas, eps=args.eps)
log = pd.DataFrame(index=[],
columns=['epoch',
'loss',
'loss_ssim_ir',
'loss_ssim_vi',
'loss_RMI_ir',
'loss_RMI_vi',
])
for epoch in range(args.epochs):
print('Epoch [%d/%d]' % (epoch+1, args.epochs))
train_log = train(args, train_loader_ir,train_loader_vi, model, criterion_ssim_ir, criterion_ssim_vi,criterion_RMI_ir,criterion_RMI_vi, optimizer, epoch) # 训练集
print('loss: %.4f - loss_ssim_ir: %.4f - loss_ssim_vi: %.4f - loss_RMI_ir: %.4f - loss_RMI_vi: %.4f '
% (train_log['loss'],
train_log['loss_ssim_ir'],
train_log['loss_ssim_vi'],
train_log['loss_RMI_ir'],
train_log['loss_RMI_vi'],
))
tmp = pd.Series([
epoch + 1,
train_log['loss'],
train_log['loss_ssim_ir'],
train_log['loss_ssim_vi'],
train_log['loss_RMI_ir'],
train_log['loss_RMI_vi'],
], index=['epoch', 'loss', 'loss_ssim_ir', 'loss_ssim_vi', 'loss_RMI_ir', 'loss_RMI_vi'])
log = log.append(tmp, ignore_index=True)
log.to_csv('models/%s/log.csv' %args.name, index=False)
if (epoch+1) % 1 == 0:
torch.save(model.state_dict(), 'models/%s/model_{}.pth'.format(epoch+1) %args.name)
if __name__ == '__main__':
main()