-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathCharLSTM.py
269 lines (210 loc) · 11 KB
/
CharLSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import sys, os, random, pickle, re, time, string
import numpy as np
import tensorflow as tf
import sklearn.metrics as skm
class CharacterLSTM(object):
def __init__(self, labels, embedding_size=32, lstm_dim=200,
optimizer='default',
learning_rate='default', embedding_factor = 1.0,
decay_rate=1.0,
dropout_keep=0.5, num_cores=4):
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
config.inter_op_parallelism_threads=num_cores
config.intra_op_parallelism_threads=num_cores
self.sess = tf.Session(config=config)
self.labels = []
self.embedding_size = embedding_size
self.optimizer = optimizer
self.decay = decay_rate
if optimizer == 'default':
self.optimizer = 'rmsprop'
else:
self.optimizer = optimizer
if learning_rate is not 'default':
self.lrate = float(learning_rate)
else:
if self.optimizer in ['adam','rmsprop']:
self.lrate = 0.001
elif self.optimizer == 'adagrad':
self.lrate = 0.5
else:
raise Exception('Unknown optimizer {}'.format(optimizer))
print "Optimizer: {}, Learning rate: {}, Decay rate: {}".format(
self.optimizer, self.lrate, self.decay)
self.embedding_factor = embedding_factor
self.rnn_dim = lstm_dim
self.dropout_keep = dropout_keep
self.char_buckets = 128
self.labels = labels
self._compile()
def _compile(self):
with self.sess.as_default():
import tensorflow_fold as td
output_size = len(self.labels)
self.keep_prob = tf.placeholder_with_default(tf.constant(1.0),shape=None)
char_emb = td.Embedding(num_buckets=self.char_buckets,
num_units_out=self.embedding_size)
char_cell = td.ScopedLayer(tf.contrib.rnn.LSTMCell(num_units=self.rnn_dim), 'char_cell')
char_lstm = td.RNN(char_cell) >> td.GetItem(1) >> td.GetItem(1)
rnn_fwdcell = td.ScopedLayer(tf.contrib.rnn.LSTMCell(num_units=self.rnn_dim), 'lstm_fwd')
fwdlayer = td.RNN(rnn_fwdcell) >> td.GetItem(0)
rnn_bwdcell = td.ScopedLayer(tf.contrib.rnn.LSTMCell(num_units=self.rnn_dim), 'lstm_bwd')
bwdlayer = (td.Slice(step=-1) >> td.RNN(rnn_bwdcell)
>> td.GetItem(0) >> td.Slice(step=-1))
def charfeature_lookup(c):
if c in string.lowercase:
return 0
elif c in string.uppercase:
return 1
elif c in string.punctuation:
return 2
else:
return 3
char_input = (td.InputTransform(lambda s: [ord(c) for c in s])
>> td.Map(td.Scalar('int32') >> char_emb))
char_feature = (td.InputTransform(lambda s: [ charfeature_lookup(c) for c in s ])
>> td.Map(td.Scalar('int32') >> td.Embedding(num_buckets=4,num_units_out=8)))
input_layer = td.Map(td.AllOf(char_input,char_feature) >> td.ZipWith(td.Concat()) >> char_lstm)
maxlayer = (td.AllOf(fwdlayer, bwdlayer)
>> td.ZipWith(td.Concat())
>> td.Max())
output_layer = (input_layer >>
maxlayer >> td.FC(output_size,
input_keep_prob=self.keep_prob,
activation=None))
self.compiler = td.Compiler.create((output_layer,
td.Vector(output_size,dtype=tf.int32)))
self.y_out, self.y_true = self.compiler.output_tensors
self.y_loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(
logits=self.y_out,labels=self.y_true))
self.y_prob = tf.nn.softmax(self.y_out)
self.y_true_idx = tf.argmax(self.y_true,axis=1)
self.y_pred_idx = tf.argmax(self.y_prob,axis=1)
self.y_pred = tf.one_hot(self.y_pred_idx,depth=output_size,dtype=tf.int32)
epoch_step = tf.Variable(0, trainable=False)
self.epoch_step_op = tf.assign(epoch_step, epoch_step+1)
lrate_decay = tf.train.exponential_decay(self.lrate, epoch_step, 1, self.decay)
if self.optimizer == 'adam':
self.opt = tf.train.AdamOptimizer(learning_rate=lrate_decay)
elif self.optimizer == 'adagrad':
self.opt = tf.train.AdagradOptimizer(learning_rate=lrate_decay,
initial_accumulator_value=1e-08)
elif self.optimizer == 'rmsprop' or self.optimizer == 'default':
self.opt = tf.train.RMSPropOptimizer(learning_rate=lrate_decay,
epsilon=1e-08)
else:
raise Exception(('The optimizer {} is not in list of available '
+ 'optimizers: default, adam, adagrad, rmsprop.')
.format(self.optimizer))
# apply learning multiplier on on embedding learning rate
embeds = [char_emb.weights]
grads_and_vars = self.opt.compute_gradients(self.y_loss)
found = 0
for i, (grad, var) in enumerate(grads_and_vars):
if var in embeds:
found += 1
grad = tf.scalar_mul(self.embedding_factor, grad)
grads_and_vars[i] = (grad, var)
assert found == len(embeds) # internal consistency check
self.train_step = self.opt.apply_gradients(grads_and_vars)
self.sess.run(tf.global_variables_initializer())
self.saver = tf.train.Saver(max_to_keep=100)
def _onehot(self, y, categories):
y_onehot = np.zeros((len(y),len(categories)))
for i in range(len(y)):
y_onehot[i,categories.index(y[i])] = 1
return y_onehot
def _train_minibatches(self,minibatches):
mavg_loss = None
for k, minibatch in enumerate(minibatches):
varl = [self.train_step, self.y_loss, self.y_pred_idx, self.y_true_idx]
minibatch[self.keep_prob] = self.dropout_keep
_, ym_loss, ym_pred, ym_true = self.sess.run(varl, minibatch)
if mavg_loss is None:
mavg_loss = ym_loss
else:
mavg_loss = 0.9 * mavg_loss + 0.1 * ym_loss
#sys.stdout.write(" >> training {}/{} loss={:.7f} \r".format(
# k+1,len(minibatches),mavg_loss))
#sys.stdout.flush()
def fit(self, X, y, X_dev, y_dev, num_epoch = 30, batch_size = 8, seed = 1, validation_split = 0.20):
random.seed(seed)
train_split = zip(X,self._onehot(y,self.labels))
valid_split = zip(X_dev,self._onehot(y_dev,self.labels))
print "Target labels: {}".format(len(self.labels))
print "{}/{} in training/validation set".format(len(train_split),len(valid_split))
session_id = int(time.time())
trainsp = random.sample(train_split,1000)
trainfd = self.compiler.build_feed_dict(trainsp)
valfd = self.compiler.build_feed_dict(valid_split)
best_epoch = 0
best_model = None
best_score = 0
for i in range(1,num_epoch+1):
estart = time.time()
batchpool = random.sample(train_split,len(train_split))
minibatches = []
for k in range(0,len(batchpool),batch_size):
pool = batchpool[k:k+batch_size]
minibatches.append(self.compiler.build_feed_dict(pool))
self._train_minibatches(minibatches)
self.sess.run(self.epoch_step_op)
loss, yt_pred, yt_true = self.sess.run([self.y_loss, self.y_pred_idx, self.y_true_idx], trainfd)
acc = self.accuracy(yt_pred,yt_true)
yv_pred, yv_true = self.sess.run([self.y_pred_idx, self.y_true_idx], valfd)
vacc = self.accuracy(yv_pred,yv_true)
save_marker = ''
if vacc >= best_score:
best_model = './tmp/model-t{}-{}-e{}-s{}.ckpt'.format(
session_id, type(self).__name__.lower(),i,seed)
best_epoch, best_score = i, vacc
self.saver.save(self.sess, best_model)
save_marker = '*'
elapsed = int(time.time() - estart)
emin, esec = elapsed / 60, elapsed % 60
print "epoch {} loss {} fit {:.2f} val {:.2f} [{}m{}s] {}".format(i,
loss, acc, vacc, emin, esec, save_marker)
if best_model is None:
print "WARNING: NO GOOD FIT"
self.saver.restore(self.sess, best_model)
print "Fitted to model from epoch {} with score {} at {}".format(best_epoch,best_score,best_model)
def save(self, model_path):
self.saver.save(self.sess, model_path)
def restore(self, model_path):
tf.reset_default_graph()
self.saver.restore(self.sess, model_path)
def predict(self, X, batch_size = 100):
dummy_labels = [self.labels[0]] * len(X)
dummy_y = self._onehot(dummy_labels,self.labels)
testset_all = zip(X,dummy_y)
prediction_idx = []
for k in range(0,len(testset_all),batch_size):
testset = testset_all[k:k+batch_size]
testfd = self.compiler.build_feed_dict(testset)
prediction_idx += list(self.sess.run(self.y_pred_idx, testfd))
return [ self.labels[idx] for idx in prediction_idx ]
def predict_proba(self, X, batch_size = 100):
dummy_labels = [self.labels[0]] * len(X)
dummy_y = self._onehot(dummy_labels,self.labels)
testset_all = zip(X,dummy_y)
y_prob_list = []
for k in range(0,len(testset_all),batch_size):
testset = testset_all[k:k+batch_size]
testfd = self.compiler.build_feed_dict(testset)
y_prob_list.append(self.sess.run(self.y_prob, testfd))
return np.concatenate(y_prob_list,axis=0)
def evaluate(self,X,y, batch_size = 100, macro = False):
testset_all = zip(X,self._onehot(y,self.labels))
y_pred_idx = []
y_true_idx = []
for k in range(0,len(testset_all),batch_size):
testset = testset_all[k:k+batch_size]
testfd = self.compiler.build_feed_dict(testset)
yp, yt = self.sess.run([self.y_pred_idx,self.y_true_idx], testfd)
y_pred_idx += list(yp)
y_true_idx += list(yt)
return self.accuracy(y_pred_idx,y_true_idx)
def accuracy(self,y_pred,y_true):
return skm.accuracy_score(y_true,y_pred)