-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
250 lines (200 loc) · 6.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import time
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from hyperparams import hp
from dataset import TextMelDataset, text_mel_collate_fn
from tts_loss import TTSLoss
from model import TransformerTTS
from melspecs import inverse_mel_spec_to_wav
from text_to_seq import text_to_seq
def batch_process(batch):
text_padded, \
text_lengths, \
mel_padded, \
mel_lengths, \
stop_token_padded = batch
text_padded = text_padded.cuda()
text_lengths = text_lengths.cuda()
mel_padded = mel_padded.cuda()
stop_token_padded = stop_token_padded.cuda()
mel_lengths = mel_lengths.cuda()
N = mel_padded.shape[0]
SOS = torch.zeros((N, 1, hp.mel_freq), device=mel_padded.device) # Start of sequence
mel_input = torch.cat(
[
SOS,
mel_padded[:, :-1, :] # (N, L, FREQ)
],
dim=1
)
return text_padded, \
text_lengths, \
mel_padded, \
mel_lengths, \
mel_input, \
stop_token_padded
def inference_utterance(model, text):
sequences = text_to_seq(text).unsqueeze(0).cuda()
postnet_mel, stop_token = model.inference(
sequences,
stop_token_threshold=1e5,
with_tqdm = False
)
audio = inverse_mel_spec_to_wav(postnet_mel.detach()[0].T)
fig, (ax1) = plt.subplots(1, 1)
ax1.imshow(
postnet_mel[0, :, :].detach().cpu().numpy().T,
)
return audio, fig
def calculate_test_loss(model, test_loader):
test_loss_mean = 0.0
model.eval()
with torch.no_grad():
for test_i, test_batch in enumerate(test_loader):
test_text_padded, \
test_text_lengths, \
test_mel_padded, \
test_mel_lengths, \
test_mel_input, \
test_stop_token_padded = batch_process(batch)
test_post_mel_out, test_mel_out, test_stop_token_out = model(
test_text_padded,
test_text_lengths,
test_mel_input,
test_mel_lengths
)
test_loss = criterion(
mel_postnet_out = test_post_mel_out,
mel_out = test_mel_out,
stop_token_out = test_stop_token_out,
mel_target = test_mel_padded,
stop_token_target = test_stop_token_padded
)
test_loss_mean += test_loss.item()
test_loss_mean = test_loss_mean / (test_i + 1)
return test_loss_mean
if __name__ == "__main__":
torch.manual_seed(hp.seed)
df = pd.read_csv(hp.csv_path)
train_df, test_df = train_test_split(
df,
test_size=64,
random_state=hp.seed
)
train_loader = torch.utils.data.DataLoader(
TextMelDataset(train_df),
num_workers=2,
shuffle=True,
sampler=None,
batch_size=hp.batch_size,
pin_memory=True,
drop_last=True,
collate_fn=text_mel_collate_fn
)
test_loader = torch.utils.data.DataLoader(
TextMelDataset(test_df),
num_workers=2,
shuffle=True,
sampler=None,
batch_size=8,
pin_memory=True,
drop_last=True,
collate_fn=text_mel_collate_fn
)
train_saved_path = f"{hp.save_path}/train_{hp.save_name}"
test_saved_path = f"{hp.save_path}/test_{hp.save_name}"
print("train_saved_path:", train_saved_path)
print("test_saved_path:", test_saved_path)
logger = SummaryWriter(hp.log_path)
criterion = TTSLoss().cuda()
model = TransformerTTS().cuda()
optimizer = torch.optim.AdamW(model.parameters(), lr=hp.lr)
scaler = torch.cuda.amp.GradScaler()
best_test_loss_mean = float("inf")
best_train_loss_mean = float("inf")
train_loss_mean = 0.0
epoch = 0
i = 0
if os.path.isfile(train_saved_path):
state = torch.load(train_saved_path)
state_model = state["model"]
state_optimizer = state["optimizer"]
i = state["i"] + 1
best_test_loss_mean = state.get("test_loss", float("inf"))
best_train_loss_mean = state.get("train_loss", float("inf"))
model.load_state_dict(state_model)
optimizer.load_state_dict(state_optimizer)
print(f"Load: {i}; test_loss: {np.round(best_test_loss_mean, 5)}; train_loss: {np.round(best_train_loss_mean, 5)}")
else:
print("Start from zero!")
start_time_sec = time.time()
while True:
for batch in train_loader:
text_padded, \
text_lengths, \
mel_padded, \
mel_lengths, \
mel_input, \
stop_token_padded = batch_process(batch)
model.train(True)
model.zero_grad()
with torch.autocast(device_type='cuda', dtype=torch.float16):
post_mel_out, mel_out, stop_token_out = model(
text_padded,
text_lengths,
mel_input,
mel_lengths
)
loss = criterion(
mel_postnet_out = post_mel_out,
mel_out = mel_out,
stop_token_out = stop_token_out,
mel_target = mel_padded,
stop_token_target = stop_token_padded
)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), hp.grad_clip)
scaler.step(optimizer)
scaler.update()
train_loss_mean += loss.item()
if i !=0 and i % hp.step_print == 0:
train_loss_mean = train_loss_mean / hp.step_print
logger.add_scalar("Loss/train_loss", train_loss_mean, global_step=i)
if i % hp.step_test == 0:
test_loss_mean = calculate_test_loss(model, test_loader)
audio, fig = inference_utterance(model, "Hello, World.")
logger.add_scalar("Loss/test_loss", test_loss_mean, global_step=i)
logger.add_figure(f"Img/img_{i}", fig, global_step=i)
logger.add_audio(f"Utterance/audio_{i}",audio, sample_rate=hp.sr, global_step=i)
print(f"{epoch}-{i}) Test loss: {np.round(test_loss_mean, 5)}")
if i % hp.step_save == 0:
is_best_train = train_loss_mean < best_train_loss_mean
is_best_test = test_loss_mean < best_test_loss_mean
state = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"i": i,
"test_loss": test_loss_mean,
"train_loss": train_loss_mean
}
if is_best_train:
print(f"{epoch}-{i}) Save best train")
torch.save(state, train_saved_path)
best_train_loss_mean = train_loss_mean
if is_best_test:
print(f"{epoch}-{i}) Save best test")
torch.save(state, test_saved_path)
best_test_loss_mean = test_loss_mean
end_time_sec = time.time()
time_sec = np.round(end_time_sec - start_time_sec, 3)
start_time_sec = end_time_sec
print(f"{epoch}-{i}) Train loss: {np.round(train_loss_mean, 5)}; Duration: {time_sec} sec.")
train_loss_mean = 0.0
i += 1
epoch += 1