-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_ratpred.py
executable file
·133 lines (101 loc) · 5.21 KB
/
run_ratpred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import sys
import yaml
import codecs
from argparse import ArgumentParser
from tgen.logf import log_info, set_debug_stream
from tgen.debug import exc_info_hook
from tgen.futil import file_stream
from tgen.rnd import rnd
from ratpred.predictor import RatingPredictor
sys.excepthook = exc_info_hook
def train(args):
if args.random_seed: # set random seed if needed
rnd.seed(args.random_seed)
log_info("Loading configuration from %s..." % args.config_file)
with codecs.open(args.config_file, 'r', 'UTF-8') as fh:
cfg = yaml.load(fh)
log_info("Initializing...")
rp = RatingPredictor(cfg)
if args.tensorboard_dir_id is not None:
tb_dir, run_id = args.tensorboard_dir_id.split(':', 1)
rp.set_tensorboard_logging(tb_dir, run_id)
log_info("Training...")
rp.train(args.train_data, valid_data_file=args.valid_data,
data_portion=args.training_portion, model_fname=args.model_file)
log_info("Saving model to %s..." % args.model_file)
rp.save_to_file(args.model_file)
def test(args):
rp = RatingPredictor.load_from_file(args.model_file)
log_info("Loading test data from %s..." % args.test_data)
inputs, targets = rp.load_data(args.test_data)
log_info("Rating %d instances..." % len(inputs))
results = rp.evaluate(inputs, targets, args.write_outputs)
for tc in rp.target_cols:
log_info("%s Distance: %.3f (avg: %.3f, std: %.3f)" % (tc.upper(),
results[tc]['dist_total'],
results[tc]['dist_avg'],
results[tc]['dist_stddev']))
log_info("%s MAE: %.3f, RMSE: %.3f" % (tc.upper(), results[tc]['mae'], results[tc]['rmse']))
log_info("%s Accuracy: %.3f" % (tc.upper(), results[tc]['accuracy']))
log_info("%s Pearson correlation: %.3f (p-value %.3f)" %
(tc.upper(), results[tc]['pearson'], results[tc]['pearson_pv']))
log_info("%s Spearman correlation: %.3f (p-value %.3f)" %
(tc.upper(), results[tc]['spearman'], results[tc]['spearman_pv']))
log_info("%s Pairwise rank accuracy: %.3f" % (tc.upper(), results[tc]['rank_acc']))
log_info("%s Pairwise rank loss: %.3f (avg: %.3f)" %
(tc.upper(), results[tc]['rank_loss_total'], results[tc]['rank_loss_avg']))
def interactive(args):
rp = RatingPredictor.load_from_file(args.model_file)
print('')
inputs = rp.interactive_input()
while inputs is not None:
da, ref, hyp, hyp2 = inputs
raw_rating, raw_rank_diff = rp.rate([hyp], [hyp2],
[ref] if ref else None,
[da] if da else None,
adjust_output=False)
print('Raw rating : % .4f' % raw_rating[0])
if hyp2:
print('Raw out2 rating: % .4f' % (raw_rating[0] - raw_rank_diff[0]))
print('Raw rank diff : % .4f' % raw_rank_diff[0])
print('')
inputs = rp.interactive_input()
def main():
ap = ArgumentParser()
ap.add_argument('-d', '--debug-output', help='Path to debugging output file', type=str)
subp = ap.add_subparsers()
ap_train = subp.add_parser('train', help='Train a new rating predictor')
ap_train.add_argument('-p', '--training-portion', type=float,
help='Part of data used for traing', default=1.0)
ap_train.add_argument('-r', '--random-seed', type=str,
help='String to use as a random seed', default=None)
ap_train.add_argument('-v', '--valid-data', type=str,
help='Path to validation data file', default=None)
ap_train.add_argument('-t', '--tensorboard-dir-id', default=None,
help='Colon-separated path_to_tensorboard_logdir:run_id')
ap_train.add_argument('config_file', type=str, help='Path to the configuration file')
ap_train.add_argument('train_data', type=str, help='Path to the training data TSV file')
ap_train.add_argument('model_file', type=str, help='Path where to store the predictor model')
ap_test = subp.add_parser('test', help='Test a trained predictor on given data')
ap_test.add_argument('-w', '--write-outputs', type=str,
help='Path to a prediction output file (not written when empty)',
default=None)
ap_test.add_argument('model_file', type=str, help='Path to a trained predictor model')
ap_test.add_argument('test_data', type=str, help='Path to the test data TSV file')
ap_interactive = subp.add_parser('interactive', help='Interactive test session')
ap_interactive.add_argument('model_file', type=str, help='Path to a trained predictor model')
args = ap.parse_args()
if args.debug_output:
ds = file_stream(args.debug_output, mode='w')
set_debug_stream(ds)
if hasattr(args, 'train_data'):
train(args)
elif hasattr(args, 'test_data'):
test(args)
else:
interactive(args)
if __name__ == '__main__':
main()