-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSwAV_main.py
365 lines (273 loc) · 14 KB
/
SwAV_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import argparse
import os
import pandas
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
import torchvision
import torch
import torchvision
from torch import nn
from lightly.data import LightlyDataset, SwaVCollateFunction
from lightly.loss import SwaVLoss
from lightly.models.modules import SwaVProjectionHead, SwaVPrototypes
import libml.utils as utils
from libml.utils import EarlyStopping
import pandas as pd
from sklearn.linear_model import LogisticRegression
import time
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Home device: {}'.format(device))
class SwaV(nn.Module):
def __init__(self, backbone, n_prototypes=512):
super().__init__()
self.backbone = backbone
self.projection_head = SwaVProjectionHead(512, 512, 128)
self.prototypes = SwaVPrototypes(128, n_prototypes=n_prototypes)
def forward(self, x):
x = self.backbone(x).flatten(start_dim=1)
x = self.projection_head(x)
x = nn.functional.normalize(x, dim=1, p=2)
p = self.prototypes(x)
return p
def return_rep(self, x):
x = self.backbone(x).flatten(start_dim=1)
return F.normalize(x, dim=-1)
from sklearn.metrics import confusion_matrix as sklearn_cm
def calculate_balanced_accuracy(output, target):
confusion_matrix = sklearn_cm(target, output)
n_class = confusion_matrix.shape[0]
#print('Inside calculate_balanced_accuracy, {} classes passed in'.format(n_class), flush=True)
recalls = []
for i in range(n_class):
recall = confusion_matrix[i,i]/np.sum(confusion_matrix[i])
recalls.append(recall)
#print('class{} recall: {}'.format(i, recall), flush=True)
balanced_accuracy = np.mean(np.array(recalls))
return balanced_accuracy * 100
def log_n_uniform(low=-3, high=0, size=1, coefficient=1, base=10):
power_value = np.random.uniform(low, high, size)[0]
return coefficient*np.power(base, power_value)
def uniform(low=0.0, high=1.0, size=1, decimal=1):
return np.random.uniform(low=low, high=high, size=size)[0]
def train(args, net, data_loader, train_optimizer, scheduler, criterion):
net.train()
total_loss, total_num, train_bar = 0.0, 0, tqdm(data_loader)
for pos_1, pos_2, target in train_bar:
#print("---------------------------------------------")
pos_1, pos_2 = pos_1.to(device,non_blocking=True), pos_2.to(device,non_blocking=True)
model.prototypes.normalize()
#print(pos_1, pos_1.shape)
out_1 = net(pos_1)
out_2 = net(pos_2)
#print(out_1.shape, out_2.shape)
loss = criterion([out_1], [out_2])
train_optimizer.zero_grad()
loss.backward()
train_optimizer.step()
total_num += batch_size
total_loss += loss.item() * batch_size
print("---------------------------------------------")
if epoch >= 0:
scheduler.step()
return total_loss / total_num
def test(net, memory_data_loader, test_data_loader):
net.eval()
total_top1, total_top5, total_num, feature_bank, label_bank = 0.0, 0.0, 0, [], []
with torch.no_grad():
# generate feature bank
for data, _, target in tqdm(memory_data_loader, desc='Feature extracting'):
feature = net.return_rep(data.to(device, non_blocking=True))
#print(feature.shape)
feature_bank.append(feature)
label_bank.append(target)
# [D, N]
feature_bank = torch.cat(feature_bank, dim=0).t().contiguous()
label_bank = torch.cat(label_bank, dim=0).t().contiguous()
# [N]
feature_labels = torch.tensor(label_bank, device=feature_bank.device)
feature_bank = feature_bank.T.detach().cpu().numpy()
label_bank = label_bank.numpy()
clf = LogisticRegression(random_state=0, class_weight='balanced').fit(feature_bank, label_bank)
test_bar = tqdm(test_data_loader)
label_test_bank = []
label_test_pred = []
for data, _, target in test_bar:
total_num = total_num + len(data)
data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)
feature = net.return_rep(data.to(device, non_blocking=True))
#top_1 = len(np.where(clf.predict(feature.cpu().detach().numpy()) == target.cpu().numpy())[0])
#total_top1 += top_1
#print(total_top1)
label_test_bank = label_test_bank + list(target.cpu().detach().numpy())
label_test_pred = label_test_pred + list(clf.predict(feature.cpu().detach().numpy()))
balanced_accuracy = calculate_balanced_accuracy(label_test_pred, label_test_bank)
print(balanced_accuracy)
return balanced_accuracy
# test for one epoch, use weighted knn to find the most similar images' label to assign the test image
def pred_val(net, memory_data_loader, test_data_loader):
net.eval()
total_top1, total_top5, total_num, feature_bank, label_bank = 0.0, 0.0, 0, [], []
val_max_all = []
reg_all = []
with torch.no_grad():
# generate feature bank
for data, _, target in tqdm(memory_data_loader, desc='Feature extracting'):
#print(target)
feature = net.return_rep(data.to(device, non_blocking=True))
feature_bank.append(feature)
label_bank.append(target)
# [D, N]
feature_bank = torch.cat(feature_bank, dim=0).t().contiguous()
label_bank = torch.cat(label_bank, dim=0).t().contiguous()
# [N]
feature_labels = torch.tensor(label_bank, device=feature_bank.device)
feature_bank = feature_bank.T.detach().cpu().numpy()
label_bank = label_bank.numpy()
for i in range(10):
reg = log_n_uniform(-1, 1)
clf = LogisticRegression(random_state=0, class_weight='balanced', C = reg).fit(feature_bank, label_bank)
test_bar = tqdm(test_data_loader)
label_test_bank = []
label_test_pred = []
for data, _, target in test_bar:
total_num = total_num + len(data)
data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)
feature = net.return_rep(data.to(device, non_blocking=True))
#top_1 = len(np.where(clf.predict(feature.cpu().detach().numpy()) == target.cpu().numpy())[0])
#total_top1 += top_1
#print(total_top1)
label_test_bank = label_test_bank + list(target.cpu().detach().numpy())
label_test_pred = label_test_pred + list(clf.predict(feature.cpu().detach().numpy()))
balanced_accuracy = calculate_balanced_accuracy(label_test_pred, label_test_bank)
print(balanced_accuracy, reg)
val_max_all.append(balanced_accuracy)
reg_all.append(reg)
return val_max_all[int(np.where(val_max_all == max(val_max_all))[0][0])], reg_all[int(np.where(val_max_all == max(val_max_all))[0][0])]
# test for one epoch, use weighted knn to find the most similar images' label to assign the test image
def pred_test(net, memory_data_loader, test_data_loader, reg):
net.eval()
total_top1, total_top5, total_num, feature_bank, label_bank = 0.0, 0.0, 0, [], []
with torch.no_grad():
# generate feature bank
for data, _, target in tqdm(memory_data_loader, desc='Feature extracting'):
#print(target)
feature = net.return_rep(data.to(device, non_blocking=True))
feature_bank.append(feature)
label_bank.append(target)
# [D, N]
feature_bank = torch.cat(feature_bank, dim=0).t().contiguous()
label_bank = torch.cat(label_bank, dim=0).t().contiguous()
# [N]
feature_labels = torch.tensor(label_bank, device=feature_bank.device)
feature_bank = feature_bank.T.detach().cpu().numpy()
label_bank = label_bank.numpy()
clf = LogisticRegression(random_state=0, class_weight='balanced', C = reg).fit(feature_bank, label_bank)
test_bar = tqdm(test_data_loader)
label_test_bank = []
label_test_pred = []
for data, _, target in test_bar:
total_num = total_num + len(data)
data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)
feature = net.return_rep(data.to(device, non_blocking=True))
#top_1 = len(np.where(clf.predict(feature.cpu().detach().numpy()) == target.cpu().numpy())[0])
#total_top1 += top_1
#print(total_top1)
label_test_bank = label_test_bank + list(target.cpu().detach().numpy())
label_test_pred = label_test_pred + list(clf.predict(feature.cpu().detach().numpy()))
balanced_accuracy = calculate_balanced_accuracy(label_test_pred, label_test_bank)
print(balanced_accuracy)
return balanced_accuracy
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train SimCLR')
parser.add_argument('--root', type=str, default='../data', help='Path to data directory')
parser.add_argument('--feature_dim', default=128, type=int, help='Feature dim for latent vector')
parser.add_argument('--temperature', default=0.1, type=float, help='Temperature used in softmax')
parser.add_argument('--k', default=10, type=int, help='Top k most similar images used to predict the label')
parser.add_argument('--batch_size', default=256, type=int, help='Number of images in each mini-batch')
parser.add_argument('--lr', default=0.001, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--wd', default=1e-6, type=float, metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--epochs', default=400, type=int, help='Number of sweeps over the dataset to train')
parser.add_argument('--dataset_name', default='cifar10', type=str, help='Choose loss function')
parser.add_argument('--patience', default=10, type=int, help='Earlystop patience')
parser.add_argument('--seed', default=0, type=int, help='seed')
# args parse
args = parser.parse_args()
feature_dim, temperature, k = args.feature_dim, args.temperature, args.k
batch_size, epochs = args.batch_size, args.epochs
dataset_name = args.dataset_name
#configuring an adaptive beta if using annealing method
result = np.zeros(epochs)
# data prepare
print("Loading data")
train_data, memory_data, test_data, test_data_2 = utils.get_medical_dataset()
train_loader = DataLoader(train_data, batch_size=batch_size, num_workers = 12, shuffle=True, pin_memory=True, drop_last=True)
memory_loader = DataLoader(memory_data, batch_size=batch_size, num_workers = 12, shuffle=False, pin_memory=True)
val_loader = DataLoader(test_data, batch_size=batch_size, num_workers = 12, shuffle=False, pin_memory=True)
test_loader = DataLoader(test_data_2, batch_size=batch_size, num_workers = 12, shuffle=False, pin_memory=True)
print("Training data loading")
# model setup and optimizer config
# training loop
#os.makedirs('results/{}'.format(dataset_name))
seed = args.seed
np.random.seed(seed=seed)
start = time.time()
epoch_all = 0
num_hyper_param = 0
res_10000 = np.zeros((10000, 5))
hyper_param = np.zeros((1000, 4))
print(seed)
all_time = 50
flag = 0
while (time.time() - start)/3600 <= all_time:
lr = log_n_uniform(-4.5,-1.5)
wd = log_n_uniform(-6.5,-3.5)
n_prototypes = int(log_n_uniform(1,3))
temperature = uniform(0.07, 0.12)
flag = flag + 1
print(n_prototypes)
hyper_param[num_hyper_param][0] = lr
hyper_param[num_hyper_param][1] = wd
hyper_param[num_hyper_param][2] = n_prototypes
hyper_param[num_hyper_param][3] = temperature
num_hyper_param += 1
np.save("hyper_param_"+str(seed), hyper_param)
resnet = torchvision.models.resnet18()
backbone = nn.Sequential(*list(resnet.children())[:-1])
model = SwaV(backbone, n_prototypes)
model.to(device)
criterion = SwaVLoss(temperature = temperature)
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=wd)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=len(train_loader), eta_min=0, last_epoch=-1)
res = np.zeros((epochs, 2))
early_stopping = EarlyStopping(patience=args.patience, verbose=True)
best_acc = 0
train_loss = 0
val_acc_1 = 0
test_acc_1 = 0
epoch = 0
results = {'epoch' : [], 'train_loss': [], 'test_acc@1': [], "time": []}
for epoch in range(1, epochs + 1):
val_acc_1, reg = pred_val(model, memory_loader, val_loader)
print(epoch, val_acc_1)
if best_acc < val_acc_1:
best_acc = val_acc_1
test_acc_1 = pred_test(model, memory_loader, test_loader, reg)
#test_acc_1 = test(model, memory_loader, test_loader_2)
train_loss = train(args, model, train_loader, optimizer, scheduler, criterion)
print(train_loss)
error_rate = 1 - val_acc_1
early_stopping(error_rate, model) # you can replace error_rate with val loss
if early_stopping.early_stop:
break
res_10000[epoch_all][0] = train_loss
res_10000[epoch_all][1] = val_acc_1
res_10000[epoch_all][2] = test_acc_1
res_10000[epoch_all][3] = (time.time() - start)/60
res_10000[epoch_all][4] = flag
np.save("SwAV_"+str(seed), res_10000)
epoch_all += 1