@article{Cai_2019,
title={Cascade R-CNN: High Quality Object Detection and Instance Segmentation},
ISSN={1939-3539},
url={http://dx.doi.org/10.1109/tpami.2019.2956516},
DOI={10.1109/tpami.2019.2956516},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Cai, Zhaowei and Vasconcelos, Nuno},
year={2019},
pages={1–1}
}
Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
---|---|---|---|---|---|---|
R-50-FPN | caffe | 1x | 4.2 | 40.4 | model | log | |
R-50-FPN | pytorch | 1x | 4.4 | 16.1 | 40.3 | model | log |
R-50-FPN | pytorch | 20e | - | - | 41.0 | model | log |
R-101-FPN | caffe | 1x | 6.2 | 42.3 | model | log | |
R-101-FPN | pytorch | 1x | 6.4 | 13.5 | 42.0 | model | log |
R-101-FPN | pytorch | 20e | - | - | 42.5 | model | log |
X-101-32x4d-FPN | pytorch | 1x | 7.6 | 10.9 | 43.7 | model | log |
X-101-32x4d-FPN | pytorch | 20e | 7.6 | 43.7 | model | log | |
X-101-64x4d-FPN | pytorch | 1x | 10.7 | 44.7 | model | log | |
X-101-64x4d-FPN | pytorch | 20e | 10.7 | 44.5 | model | log |
Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Download |
---|---|---|---|---|---|---|---|
R-50-FPN | caffe | 1x | 5.9 | 41.2 | 36.0 | model | log | |
R-50-FPN | pytorch | 1x | 6.0 | 11.2 | 41.2 | 35.9 | model | log |
R-50-FPN | pytorch | 20e | - | - | 41.9 | 36.5 | model | log |
R-101-FPN | caffe | 1x | 7.8 | 43.2 | 37.6 | model | log | |
R-101-FPN | pytorch | 1x | 7.9 | 9.8 | 42.9 | 37.3 | model | log |
R-101-FPN | pytorch | 20e | - | - | 43.4 | 37.8 | model | log |
X-101-32x4d-FPN | pytorch | 1x | 9.2 | 8.6 | 44.3 | 38.3 | model | log |
X-101-32x4d-FPN | pytorch | 20e | 9.2 | - | 45.0 | 39.0 | model | log |
X-101-64x4d-FPN | pytorch | 1x | 12.2 | 6.7 | 45.3 | 39.2 | model | log |
X-101-64x4d-FPN | pytorch | 20e | 12.2 | 45.6 | 39.5 | model | log |
Notes:
- The
20e
schedule in Cascade (Mask) R-CNN indicates decreasing the lr at 16 and 19 epochs, with a total of 20 epochs.