forked from ChenyangQiQi/FateZero
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jeep_watercolor.yaml
92 lines (70 loc) · 3.09 KB
/
jeep_watercolor.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# CUDA_VISIBLE_DEVICES=7 python test_fatezero.py --config config/teaser/jeep_watercolor.yaml
pretrained_model_path: "./ckpt/stable-diffusion-v1-4"
dataset_config:
path: "data/teaser_car-turn"
prompt: "a silver jeep driving down a curvy road in the countryside"
n_sample_frame: 8
sampling_rate: 1
stride: 80
offset:
left: 0
right: 0
top: 0
bottom: 0
editing_config:
use_invertion_latents: true
use_inversion_attention: true
guidance_scale: 7.5
editing_prompts: [
a silver jeep driving down a curvy road in the countryside,
watercolor painting of a silver jeep driving down a curvy road in the countryside,
]
p2p_config:
0:
# Whether to directly copy the cross attention from source
# True: directly copy, better for object replacement
# False: keep source attention, better for style
is_replace_controller: False
# Semantic layout preserving. High steps, replace more cross attention to preserve semantic layout
cross_replace_steps:
default_: 0.8
# Source background structure preserving, in [0, 1].
# e.g., =0.6 Replace the first 60% steps self-attention
self_replace_steps: 0.9
# Amplify the target-words cross attention, larger value, more close to target
# eq_params:
# words: ["", ""]
# values: [10,10]
# Target structure-divergence hyperparames
# If you change the shape of object better to use all three line, otherwise, no need.
# Without following three lines, all self-attention will be replaced
# blend_words: [['jeep',], ["car",]]
blend_self_attention: True
# blend_latents: False # Directly copy the latents, performance not so good in our case
blend_th: [2, 2]
# preserve source structure of blend_words , [0, 1]
# default is blend_th: [2, 2] # replace full-resolution edit source with self-attention
# blend_th-> [0.0, 0.0], mask -> 1, use more edit self-attention, more generated shape, less source acttention
1:
cross_replace_steps:
default_: 0.8
self_replace_steps: 0.8
eq_params:
words: ["watercolor"]
values: [10] # amplify attention to the word "tiger" by *2
use_inversion_attention: True
is_replace_controller: False
clip_length: "${..dataset_config.n_sample_frame}"
sample_seeds: [0]
num_inference_steps: 50
prompt2prompt_edit: True
model_config:
lora: 160
# temporal_downsample_time: 4
SparseCausalAttention_index: ['mid']
least_sc_channel: 640
# least_sc_channel: 100000
test_pipeline_config:
target: video_diffusion.pipelines.p2p_ddim_spatial_temporal.P2pDDIMSpatioTemporalPipeline
num_inference_steps: "${..validation_sample_logger.num_inference_steps}"
seed: 0