forked from AUTOMATIC1111/stable-diffusion-webui
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtungsten_model_inpaint.py
408 lines (355 loc) · 12.9 KB
/
tungsten_model_inpaint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import hashlib
import os
import random
import shutil
from glob import glob
from pathlib import Path
from typing import List, Optional, Tuple, Union
from tungstenkit import BaseIO, Binary, Field, Image, MaskedImage, Option, define_model
from check_if_sdxl import check_if_sdxl
from modules.initialize import initialize, initialize_vae, load_vae_weights
from modules.inpaint import inpaint
SD_FILE_PATHS = glob("models/Stable-diffusion/*.safetensors")
assert len(SD_FILE_PATHS) > 0, "Stable diffusion checkpoint not found"
IS_SDXL = check_if_sdxl(SD_FILE_PATHS[0])
SAMPLERS = [
"DPM++ 2M Karras",
"DPM++ SDE Karras",
"DPM++ 2M SDE Exponential",
"DPM++ 2M SDE Karras",
"Euler a",
"Euler",
"LMS",
"Heun",
"DPM2",
"DPM2 a",
"DPM++ 2S a",
"DPM++ 2M",
"DPM++ SDE",
"DPM++ 2M SDE",
"DPM++ 2M SDE Heun",
"DPM++ 2M SDE Heun Karras",
"DPM++ 2M SDE Heun Exponential",
"DPM++ 3M SDE",
"DPM++ 3M SDE Karras",
"DPM++ 3M SDE Exponential",
"DPM fast",
"DPM adaptive",
"LMS Karras",
"DPM2 Karras",
"DPM2 a Karras",
"DPM++ 2S a Karras",
"Restart",
]
DEFAULT_SAMPLER = "Restart"
VAE_FILE_PATHS = (
glob("models/VAE/*.safetensors")
+ glob("models/VAE/*.pt")
+ glob("models/VAE/*.ckpt")
)
SD_VAES_IN_BASE_IMAGE = [
"vae-ft-mse-840000-ema-pruned_fp16.safetensors",
"orangemix.vae.pt",
"kl-f8-anime2_fp16.safetensors",
"anything_fp16.safetensors",
"blessed2_fp16.safetensors",
"clearvae_v2.3_fp16.safetensors",
]
SDXL_VAES_IN_BASE_IMAGE = [
"sdxl_vae.safetensors",
]
ALL_VAE_FILE_PATHS = VAE_FILE_PATHS + [
"models/VAE/" + vae_name
for vae_name in (SDXL_VAES_IN_BASE_IMAGE if IS_SDXL else SD_VAES_IN_BASE_IMAGE)
if vae_name not in [Path(p).name for p in VAE_FILE_PATHS]
]
LORA_FILE_PATHS = (
glob("models/Lora/*.safetensors")
+ glob("models/Lora/*.pt")
+ glob("models/Lora/*.ckpt")
)
LORAS_IN_BASE_IMAGE = {
"detail": "add-detail-xl" if IS_SDXL else "add_detail",
"brightness": "TLS" if IS_SDXL else "add_brightness",
"contrast": "SDS_Contrast tool_XL" if IS_SDXL else "contrast_slider_v10",
"saturation": None if IS_SDXL else "add_saturation",
}
EMBEDDING_FILE_PATHS = (
glob("embeddings/*.safetensors")
+ glob("embeddings/*.pt")
+ glob("embeddings/*.ckpt")
)
class Input(BaseIO):
masked_image: MaskedImage = Field(description="Input image with mask")
prompt: str = Field(description="Specify things to see in the output")
negative_prompt: str = Option(
description="Specify things to not see in the output",
default="",
)
denoising_strength: float = Option(
description="Control how much respect the output image should pay to the original content. Setting it to 0 changes nothing. Setting to 1 you'll get an unrelated image.",
default=0.7,
le=1.0,
ge=0.0,
)
num_outputs: int = Option(
description="Number of output images",
le=3 if IS_SDXL else 4,
ge=1,
default=1,
)
seed: int = Option(
description="Same seed with the same prompt generates the same image. Set as -1 to randomize output.",
default=-1,
ge=-1,
le=4294967293,
)
width: int = Option(
description="Output image width",
default=768 if IS_SDXL else 512,
ge=512,
le=2048 if IS_SDXL else 1024,
)
height: int = Option(
description="Output image height",
default=1344 if IS_SDXL else 768,
ge=512,
le=2048 if IS_SDXL else 1024,
)
sampler: str = Option(
default=DEFAULT_SAMPLER,
choices=SAMPLERS,
description="Sampler type",
)
samping_steps: int = Option(
description="Number of denoising steps", ge=1, le=100, default=20
)
cfg_scale: float = Option(
description="Scale for classifier-free guidance", ge=1, le=20, default=7
)
clip_skip: int = Option(
description="The number of last layers of CLIP network to skip",
default=1 if IS_SDXL else 2,
ge=1,
le=11,
)
vae: str = Option(
description="Select VAE",
default=Path(VAE_FILE_PATHS[0]).name if VAE_FILE_PATHS else "None",
choices=["None"] + [Path(vae_path).name for vae_path in ALL_VAE_FILE_PATHS],
)
lora_1: Optional[Binary] = Option(
description="LoRA file. Apply by writing the following in prompt: <lora:FILE_NAME_WITHOUT_EXTENSION:MAGNITUDE>", # noqa: E501
default=None,
)
lora_2: Optional[Binary] = Option(
description="LoRA file. Apply by writing the following in prompt: <lora:FILE_NAME_WITHOUT_EXTENSION:MAGNITUDE>", # noqa: E501
default=None,
)
lora_3: Optional[Binary] = Option(
description="LoRA file. Apply by writing the following in prompt: <lora:FILE_NAME_WITHOUT_EXTENSION:MAGNITUDE>", # noqa: E501
default=None,
)
embedding_1: Optional[Binary] = Option(
description="Embedding file (textural inversion). Apply by writing the following in prompt or negative prompt: (FILE_NAME_WITHOUT_EXTENSION:MAGNITUDE)", # noqa: E501
default=None,
)
embedding_2: Optional[Binary] = Option(
description="Embedding file (textural inversion). Apply by writing the following in prompt or negative prompt: (FILE_NAME_WITHOUT_EXTENSION:MAGNITUDE)", # noqa: E501
default=None,
)
embedding_3: Optional[Binary] = Option(
description="Embedding file (textural inversion). Apply by writing the following in prompt or negative prompt: (FILE_NAME_WITHOUT_EXTENSION:MAGNITUDE)", # noqa: E501
default=None,
)
disable_prompt_modification: bool = Option(
description="Disable automatically adding suggested prompt modification. Built-in LoRAs and trigger words will remain.", # noqa: E501
default=False,
)
class Output(BaseIO):
images: List[Image]
def _to_posix_paths(paths: List[str]) -> List[str]:
return [Path(p).as_posix() for p in paths]
@define_model(
input=Input,
output=Output,
batch_size=1,
gpu=True,
gpu_mem_gb=14,
include_files=[
"configs",
"extensions-builtin",
"extensions/sd-webui-controlnet",
"extensions/adetailer",
"localizations",
"modules",
"repositories",
"check_if_sdxl.py",
]
+ _to_posix_paths(SD_FILE_PATHS)
+ _to_posix_paths(VAE_FILE_PATHS)
+ _to_posix_paths(LORA_FILE_PATHS)
+ _to_posix_paths(EMBEDDING_FILE_PATHS),
base_image="mjpyeon/tungsten-sd-base:v4",
)
class StableDiffusion:
@staticmethod
def post_build():
_save_hashes(Path("models"))
_save_hashes(Path("embeddings"))
def setup(self):
initialize(
is_sdxl=IS_SDXL,
default_sampler=DEFAULT_SAMPLER,
)
initialize_vae()
def predict(self, inputs: List[Input]) -> List[Output]:
input = inputs[0]
# Put extra loras and embeddings to its directory
loras: List[Path] = []
embeddings: List[Path] = []
try:
_prepare_dynamic_loras_and_embeddings(input, loras, embeddings)
# Assign random seed
if input.seed == -1:
input.seed = random.randrange(4294967294)
print(f"Using seed {input.seed}\n")
load_vae_weights(
os.path.join("models", "VAE", input.vae)
if input.vae != "None"
else None
)
try:
# Generate images
images = inpaint(
masked_image=input.masked_image,
prompt=input.prompt,
negative_prompt=input.negative_prompt,
seed=float(input.seed),
sampler_name=input.sampler,
batch_size=input.num_outputs,
steps=input.samping_steps,
denoising_strength=input.denoising_strength,
cfg_scale=input.cfg_scale,
width=input.width,
height=input.height,
clip_skip=input.clip_skip,
loras=self.get_loras(input),
trigger_words=self.get_trigger_words(input),
extra_positive_prompt_chunks=[]
if input.disable_prompt_modification
else self.get_extra_prompt_chunks(input),
extra_negative_prompt_chunks=[]
if input.disable_prompt_modification
else self.get_extra_negative_prompt_chunks(input),
)
return [Output(images=images)]
finally:
initialize_vae()
finally:
_cleanup_loras_and_embeddings(loras, embeddings)
def get_loras(self, input: Input) -> List[Tuple[str, float]]:
"""
Declare LoRAs to use in the format of (LORA_FILE_NAME, WEIGHT).
The LoRA weight file named LORA_FILE_NAME should exist in `models/LoRA` directory.
Examples:
- `[("add_detail", 0.5)]` -> Put `<lora:add_detail:0.5>` at the end of the prompt.
- `[("add_detail", input.detail)]` -> Put `<lora:add_detail:{detail field in input}>` at the end of the prompt. # noqa: E501
"""
return []
def get_trigger_words(self, input: Input) -> List[Union[str, Tuple[str, float]]]:
"""
Declare trigger words to be inserted at the start of the prompt.
Examples:
- `["trigger1"]` -> Put `<lora:add_detail:0.5>` at the start of the prompt.
- `[("trigger2", input.magnitude)]` -> Put `(trigger2:{magnitude field in input})` at the start of the prompt. # noqa: E501
"""
return []
def get_extra_prompt_chunks(
self, input: Input
) -> List[Union[str, Tuple[str, float]]]:
"""
Declare default prompt chunks.
Using this, you can use textual inversion.
Examples
- `["hello"]` -> Put `hello` to the prompt.
- `[("hello", 1.1)]` -> Put `(hello:1.1)` at the end of the prompt.
"""
return []
def get_extra_negative_prompt_chunks(
self, input: Input
) -> List[Union[str, Tuple[str, float]]]:
"""
Declare default negative prompt chunks.
Using this, you can use textual inversion.
Examples
- `["hello"]` -> Put `hello` to the negative prompt (w/ whitespace if required).
- `[("hello", 1.1), "world"]` -> Put `(hello:1.1), world` to the negative prompt.
"""
return []
def _prepare_dynamic_loras_and_embeddings(
input: Input, loras_list: List[Path], embeddings_list: List[Path]
):
loras_dir_path = Path("models/Lora")
embeddings_dir_path = Path("embeddings")
loras_list.extend(
[
lora.path
for lora in [
getattr(input, field_name)
for field_name in input.__fields__.keys()
if field_name.startswith("lora_")
]
if lora is not None and not (loras_dir_path / lora.path.parts[-1]).exists()
]
)
embeddings_list.extend(
[
embedding.path
for embedding in [
getattr(input, field_name)
for field_name in input.__fields__.keys()
if field_name.startswith("embedding_")
]
if embedding is not None
and not (embeddings_dir_path / embedding.path.parts[-1]).exists()
]
)
for lora_path in loras_list:
shutil.move(lora_path, loras_dir_path)
for embedding_path in embeddings_list:
shutil.move(embedding_path, embeddings_dir_path)
if loras_list:
_save_hashes(Path("models/Lora"))
if embeddings_list:
_save_hashes(Path("embeddings"))
def _cleanup_loras_and_embeddings(loras_list: List[Path], embeddings_list: List[Path]):
loras_dir_path = Path("models/Lora")
embeddings_dir_path = Path("embeddings")
for lora_path in loras_list:
lora_path_in_working_dir = loras_dir_path / lora_path.parts[-1]
if lora_path_in_working_dir.exists():
os.remove(loras_dir_path / lora_path.parts[-1])
for embedding_path in embeddings_list:
embedding_path_in_working_dir = embeddings_dir_path / embedding_path.parts[-1]
if embedding_path_in_working_dir.exists():
os.remove(embeddings_dir_path / embedding_path.parts[-1])
def _save_hashes(base_dir: Path):
for p in base_dir.rglob("*"):
if p.is_dir():
_save_hashes(p)
p_hash = p.with_name(p.name + ".hash")
if not p.is_file():
continue
if p.name.endswith(".hash"):
continue
if p_hash.exists():
continue
p_hash.write_text(_compute_hash(p))
def _compute_hash(p: Path):
blksize = 2 * 1024 * 1024
hash_sha256 = hashlib.sha256()
with open(p, "rb") as f:
for chunk in iter(lambda: f.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()