forked from hardmaru/slimevolleygym
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplay_against.py
135 lines (103 loc) · 4.27 KB
/
play_against.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""
Simple evaluation example.
run: python eval_ppo.py --render
Evaluate PPO1 policy (MLP input_dim x 64 x 64 x output_dim policy) against built-in AI
"""
import warnings
# numpy warnings because of tensorflow
warnings.filterwarnings("ignore", category=FutureWarning, module='tensorflow')
warnings.filterwarnings("ignore", category=UserWarning, module='gym')
import gym
import numpy as np
import argparse
import slimevolleygym
from stable_baselines3 import PPO
RENDER_MODE = True
class SlimeVolleyVersusEnv(slimevolleygym.SlimeVolleyEnv):
# wrapper over the normal single player env, but loads the best self play model
def __init__(self, model_left, model_right):
super(SlimeVolleyVersusEnv, self).__init__()
self.policy = self
self.model_left = model_left
self.model_right = model_right
def predict(self, obs): # the policy
if self.model_right is None:
return self.action_space.sample() # return a random action
else:
action, _ = self.model_left.predict(obs, deterministic=True)
return action
def step(self, action):
return super(SlimeVolleyVersusEnv, self).step(action)
def rollout(env, render_mode=False):
""" play one agent vs the other in modified gym-style loop. """
obs = env.reset()
done = False
total_reward = 0
while not done:
# action, _states = policy.predict(obs, deterministic=True)
obs, reward, done, _ = env.step(0)
total_reward += reward
if render_mode:
env.render()
return total_reward
if __name__=="__main__":
if RENDER_MODE:
from pyglet.window import key
from time import sleep
manualAction = [0, 0, 0] # forward, backward, jump
otherManualAction = [0, 0, 0]
manualMode = False
otherManualMode = False
# taken from https://github.com/openai/gym/blob/master/gym/envs/box2d/car_racing.py
def key_press(k, mod):
global manualMode, manualAction, otherManualMode, otherManualAction
if k == key.LEFT: manualAction[0] = 1
if k == key.RIGHT: manualAction[1] = 1
if k == key.UP: manualAction[2] = 1
if (k == key.LEFT or k == key.RIGHT or k == key.UP): manualMode = True
if k == key.D: otherManualAction[0] = 1
if k == key.A: otherManualAction[1] = 1
if k == key.W: otherManualAction[2] = 1
if (k == key.D or k == key.A or k == key.W): otherManualMode = True
def key_release(k, mod):
global manualMode, manualAction, otherManualMode, otherManualAction
if k == key.LEFT: manualAction[0] = 0
if k == key.RIGHT: manualAction[1] = 0
if k == key.UP: manualAction[2] = 0
if k == key.D: otherManualAction[0] = 0
if k == key.A: otherManualAction[1] = 0
if k == key.W: otherManualAction[2] = 0
parser = argparse.ArgumentParser(description='Evaluate pre-trained PPO agent.')
parser.add_argument('--left-model-path', help='path to stable-baselines model.',
type=str, default="log_dir/new_luis_model")
parser.add_argument('--right-model-path', help='path to stable-baselines model.',
type=str, default="log_dir/new_luis_model")
parser.add_argument('--render', action='store_true', help='render to screen?', default=True)
args = parser.parse_args()
render_mode = args.render
env = gym.make("SlimeVolley-v0")
# the yellow agent:
print("Loading", args.left_model_path)
left_model = PPO.load(args.left_model_path, env=env)
# the blue agent:
print("Loading", args.right_model_path)
right_model = PPO.load(args.right_model_path, env=env)
null_model = PPO('MlpPolicy', env)
env = SlimeVolleyVersusEnv(model_left=left_model, model_right=right_model)
if RENDER_MODE:
env.render()
env.viewer.window.on_key_press = key_press
env.viewer.window.on_key_release = key_release
while True:
obs = env.reset()
done = False
manualMode = False
while not done:
if manualMode: # override with keyboard
action = manualAction
else:
action, _ = right_model.predict(obs)
obs, reward, done, _ = env.step(action)
if RENDER_MODE:
env.render()
sleep(0.005) # 0.01