-
Notifications
You must be signed in to change notification settings - Fork 24
/
tcn.py
471 lines (401 loc) · 20.5 KB
/
tcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import inspect
from typing import List
from tensorflow.keras import backend as K, Model, Input, optimizers
from tensorflow.keras import layers
from tensorflow.keras.layers import Activation, SpatialDropout1D, Lambda
from tensorflow.keras.layers import Layer, Conv1D, Dense, BatchNormalization, LayerNormalization
'''
Keras Temporal Convolutional Network, from Philippe Rémy
https://github.com/philipperemy/keras-tcn
'''
def is_power_of_two(num):
return num != 0 and ((num & (num - 1)) == 0)
def adjust_dilations(dilations):
if all([is_power_of_two(i) for i in dilations]):
return dilations
else:
new_dilations = [2 ** i for i in dilations]
return new_dilations
class ResidualBlock(Layer):
def __init__(self,
dilation_rate,
nb_filters,
kernel_size,
padding,
activation='relu',
dropout_rate=0,
kernel_initializer='he_normal',
use_batch_norm=False,
use_layer_norm=False,
last_block=True,
**kwargs):
# type: (int, int, int, str, str, float, str, bool, bool, bool, dict) -> None
"""Defines the residual block for the WaveNet TCN
Args:
x: The previous layer in the model
training: boolean indicating whether the layer should behave in training mode or in inference mode
dilation_rate: The dilation power of 2 we are using for this residual block
nb_filters: The number of convolutional filters to use in this block
kernel_size: The size of the convolutional kernel
padding: The padding used in the convolutional layers, 'same' or 'causal'.
activation: The final activation used in o = Activation(x + F(x))
dropout_rate: Float between 0 and 1. Fraction of the input units to drop.
kernel_initializer: Initializer for the kernel weights matrix (Conv1D).
use_batch_norm: Whether to use batch normalization in the residual layers or not.
use_layer_norm: Whether to use layer normalization in the residual layers or not.
kwargs: Any initializers for Layer class.
"""
self.dilation_rate = dilation_rate
self.nb_filters = nb_filters
self.kernel_size = kernel_size
self.padding = padding
self.activation = activation
self.dropout_rate = dropout_rate
self.use_batch_norm = use_batch_norm
self.use_layer_norm = use_layer_norm
self.kernel_initializer = kernel_initializer
self.last_block = last_block
self.layers = []
self.layers_outputs = []
self.shape_match_conv = None
self.res_output_shape = None
self.final_activation = None
super(ResidualBlock, self).__init__(**kwargs)
def _add_and_activate_layer(self, layer):
"""Helper function for building layer
Args:
layer: Appends layer to internal layer list and builds it based on the current output
shape of ResidualBlocK. Updates current output shape.
"""
self.layers.append(layer)
self.layers[-1].build(self.res_output_shape)
self.res_output_shape = self.layers[-1].compute_output_shape(self.res_output_shape)
def build(self, input_shape):
with K.name_scope(self.name): # name scope used to make sure weights get unique names
self.layers = []
self.res_output_shape = input_shape
for k in range(2):
name = 'conv1D_{}'.format(k)
with K.name_scope(name): # name scope used to make sure weights get unique names
self._add_and_activate_layer(Conv1D(filters=self.nb_filters,
kernel_size=self.kernel_size,
dilation_rate=self.dilation_rate,
padding=self.padding,
name=name,
kernel_initializer=self.kernel_initializer))
with K.name_scope('norm_{}'.format(k)):
if self.use_batch_norm:
self._add_and_activate_layer(BatchNormalization())
elif self.use_layer_norm:
self._add_and_activate_layer(LayerNormalization())
self._add_and_activate_layer(Activation('relu'))
self._add_and_activate_layer(SpatialDropout1D(rate=self.dropout_rate))
if not self.last_block:
# 1x1 conv to match the shapes (channel dimension).
name = 'conv1D_{}'.format(k + 1)
with K.name_scope(name):
# make and build this layer separately because it directly uses input_shape
self.shape_match_conv = Conv1D(filters=self.nb_filters,
kernel_size=1,
padding='same',
name=name,
kernel_initializer=self.kernel_initializer)
else:
self.shape_match_conv = Lambda(lambda x: x, name='identity')
self.shape_match_conv.build(input_shape)
self.res_output_shape = self.shape_match_conv.compute_output_shape(input_shape)
self.final_activation = Activation(self.activation)
self.final_activation.build(self.res_output_shape) # probably isn't necessary
# this is done to force Keras to add the layers in the list to self._layers
for layer in self.layers:
self.__setattr__(layer.name, layer)
super(ResidualBlock, self).build(input_shape) # done to make sure self.built is set True
def call(self, inputs, training=None):
"""
Returns: A tuple where the first element is the residual model tensor, and the second
is the skip connection tensor.
"""
x = inputs
self.layers_outputs = [x]
for layer in self.layers:
training_flag = 'training' in dict(inspect.signature(layer.call).parameters)
x = layer(x, training=training) if training_flag else layer(x)
self.layers_outputs.append(x)
x2 = self.shape_match_conv(inputs)
self.layers_outputs.append(x2)
res_x = layers.add([x2, x])
self.layers_outputs.append(res_x)
res_act_x = self.final_activation(res_x)
self.layers_outputs.append(res_act_x)
return [res_act_x, x]
def compute_output_shape(self, input_shape):
return [self.res_output_shape, self.res_output_shape]
class TCN(Layer):
"""Creates a TCN layer.
Input shape:
A tensor of shape (batch_size, timesteps, input_dim).
Args:
nb_filters: The number of filters to use in the convolutional layers.
kernel_size: The size of the kernel to use in each convolutional layer.
dilations: The list of the dilations. Example is: [1, 2, 4, 8, 16, 32, 64].
nb_stacks : The number of stacks of residual blocks to use.
padding: The padding to use in the convolutional layers, 'causal' or 'same'.
use_skip_connections: Boolean. If we want to add skip connections from input to each residual blocK.
return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence.
activation: The activation used in the residual blocks o = Activation(x + F(x)).
dropout_rate: Float between 0 and 1. Fraction of the input units to drop.
kernel_initializer: Initializer for the kernel weights matrix (Conv1D).
use_batch_norm: Whether to use batch normalization in the residual layers or not.
kwargs: Any other arguments for configuring parent class Layer. For example "name=str", Name of the model.
Use unique names when using multiple TCN.
Returns:
A TCN layer.
"""
def __init__(self,
nb_filters=64,
kernel_size=2,
nb_stacks=1,
dilations=(1, 2, 4, 8, 16, 32),
padding='causal',
use_skip_connections=True,
dropout_rate=0.0,
return_sequences=False,
activation='linear',
kernel_initializer='he_normal',
use_batch_norm=False,
use_layer_norm=False,
**kwargs):
self.return_sequences = return_sequences
self.dropout_rate = dropout_rate
self.use_skip_connections = use_skip_connections
self.dilations = dilations
self.nb_stacks = nb_stacks
self.kernel_size = kernel_size
self.nb_filters = nb_filters
self.activation = activation
self.padding = padding
self.kernel_initializer = kernel_initializer
self.use_batch_norm = use_batch_norm
self.use_layer_norm = use_layer_norm
self.skip_connections = []
self.residual_blocks = []
self.layers_outputs = []
self.main_conv1D = None
self.build_output_shape = None
self.lambda_layer = None
self.lambda_ouput_shape = None
if padding != 'causal' and padding != 'same':
raise ValueError("Only 'causal' or 'same' padding are compatible for this layer.")
if not isinstance(nb_filters, int):
print('An interface change occurred after the version 2.1.2.')
print('Before: tcn.TCN(x, return_sequences=False, ...)')
print('Now should be: tcn.TCN(return_sequences=False, ...)(x)')
print('The alternative is to downgrade to 2.1.2 (pip install keras-tcn==2.1.2).')
raise Exception()
# initialize parent class
super(TCN, self).__init__(**kwargs)
@property
def receptive_field(self):
assert_msg = 'The receptive field formula works only with power of two dilations.'
assert all([is_power_of_two(i) for i in self.dilations]), assert_msg
return self.kernel_size * self.nb_stacks * self.dilations[-1]
def build(self, input_shape):
self.main_conv1D = Conv1D(filters=self.nb_filters,
kernel_size=1,
padding=self.padding,
kernel_initializer=self.kernel_initializer)
self.main_conv1D.build(input_shape)
# member to hold current output shape of the layer for building purposes
self.build_output_shape = self.main_conv1D.compute_output_shape(input_shape)
# list to hold all the member ResidualBlocks
self.residual_blocks = []
total_num_blocks = self.nb_stacks * len(self.dilations)
if not self.use_skip_connections:
total_num_blocks += 1 # cheap way to do a false case for below
for s in range(self.nb_stacks):
for d in self.dilations:
self.residual_blocks.append(ResidualBlock(dilation_rate=d,
nb_filters=self.nb_filters,
kernel_size=self.kernel_size,
padding=self.padding,
activation=self.activation,
dropout_rate=self.dropout_rate,
use_batch_norm=self.use_batch_norm,
use_layer_norm=self.use_layer_norm,
kernel_initializer=self.kernel_initializer,
last_block=len(self.residual_blocks) + 1 == total_num_blocks,
name='residual_block_{}'.format(len(self.residual_blocks))))
# build newest residual block
self.residual_blocks[-1].build(self.build_output_shape)
self.build_output_shape = self.residual_blocks[-1].res_output_shape
# this is done to force keras to add the layers in the list to self._layers
for layer in self.residual_blocks:
self.__setattr__(layer.name, layer)
# Author: @karolbadowski.
output_slice_index = int(self.build_output_shape.as_list()[1] / 2) if self.padding == 'same' else -1
self.lambda_layer = Lambda(lambda tt: tt[:, output_slice_index, :])
self.lambda_ouput_shape = self.lambda_layer.compute_output_shape(self.build_output_shape)
def compute_output_shape(self, input_shape):
"""
Overridden in case keras uses it somewhere... no idea. Just trying to avoid future errors.
"""
if not self.built:
self.build(input_shape)
if not self.return_sequences:
return self.lambda_ouput_shape
else:
return self.build_output_shape
def call(self, inputs, training=None):
x = inputs
self.layers_outputs = [x]
try:
x = self.main_conv1D(x)
self.layers_outputs.append(x)
except AttributeError:
print('The backend of keras-tcn>2.8.3 has changed from keras to tensorflow.keras.')
print('Either update your imports:\n- From "from keras.layers import <LayerName>" '
'\n- To "from tensorflow.keras.layers import <LayerName>"')
print('Or downgrade to 2.8.3 by running "pip install keras-tcn==2.8.3"')
import sys
sys.exit(0)
self.skip_connections = []
for layer in self.residual_blocks:
x, skip_out = layer(x, training=training)
self.skip_connections.append(skip_out)
self.layers_outputs.append(x)
if self.use_skip_connections:
x = layers.add(self.skip_connections)
self.layers_outputs.append(x)
if not self.return_sequences:
x = self.lambda_layer(x)
self.layers_outputs.append(x)
return x
def get_config(self):
"""
Returns the config of a the layer. This is used for saving and loading from a model
:return: python dictionary with specs to rebuild layer
"""
config = super(TCN, self).get_config()
config['nb_filters'] = self.nb_filters
config['kernel_size'] = self.kernel_size
config['nb_stacks'] = self.nb_stacks
config['dilations'] = self.dilations
config['padding'] = self.padding
config['use_skip_connections'] = self.use_skip_connections
config['dropout_rate'] = self.dropout_rate
config['return_sequences'] = self.return_sequences
config['activation'] = self.activation
config['use_batch_norm'] = self.use_batch_norm
config['use_layer_norm'] = self.use_layer_norm
config['kernel_initializer'] = self.kernel_initializer
return config
def compiled_tcn(num_feat, # type: int
num_classes, # type: int
nb_filters, # type: int
kernel_size, # type: int
dilations, # type: List[int]
nb_stacks, # type: int
max_len, # type: int
output_len=1, # type: int
padding='causal', # type: str
use_skip_connections=True, # type: bool
return_sequences=True,
regression=False, # type: bool
dropout_rate=0.05, # type: float
name='tcn', # type: str,
kernel_initializer='he_normal', # type: str,
activation='linear', # type:str,
opt='adam',
lr=0.002,
use_batch_norm=False,
use_layer_norm=False):
# type: (...) -> Model
"""Creates a compiled TCN model for a given task (i.e. regression or classification).
Classification uses a sparse categorical loss. Please input class ids and not one-hot encodings.
Args:
num_feat: The number of features of your input, i.e. the last dimension of: (batch_size, timesteps, input_dim).
num_classes: The size of the final dense layer, how many classes we are predicting.
nb_filters: The number of filters to use in the convolutional layers.
kernel_size: The size of the kernel to use in each convolutional layer.
dilations: The list of the dilations. Example is: [1, 2, 4, 8, 16, 32, 64].
nb_stacks : The number of stacks of residual blocks to use.
max_len: The maximum sequence length, use None if the sequence length is dynamic.
padding: The padding to use in the convolutional layers.
use_skip_connections: Boolean. If we want to add skip connections from input to each residual blocK.
return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence.
regression: Whether the output should be continuous or discrete.
dropout_rate: Float between 0 and 1. Fraction of the input units to drop.
activation: The activation used in the residual blocks o = Activation(x + F(x)).
name: Name of the model. Useful when having multiple TCN.
kernel_initializer: Initializer for the kernel weights matrix (Conv1D).
opt: Optimizer name.
lr: Learning rate.
use_batch_norm: Whether to use batch normalization in the residual layers or not.
use_layer_norm: Whether to use layer normalization in the residual layers or not.
Returns:
A compiled keras TCN.
"""
dilations = adjust_dilations(dilations)
input_layer = Input(shape=(max_len, num_feat))
x = TCN(nb_filters, kernel_size, nb_stacks, dilations, padding,
use_skip_connections, dropout_rate, return_sequences,
activation, kernel_initializer, use_batch_norm, use_layer_norm,
name=name)(input_layer)
print('x.shape=', x.shape)
def get_opt():
if opt == 'adam':
return optimizers.Adam(lr=lr, clipnorm=1.)
elif opt == 'rmsprop':
return optimizers.RMSprop(lr=lr, clipnorm=1.)
else:
raise Exception('Only Adam and RMSProp are available here')
if not regression:
# classification
x = Dense(num_classes)(x)
x = Activation('softmax')(x)
output_layer = x
model = Model(input_layer, output_layer)
# https://github.com/keras-team/keras/pull/11373
# It's now in Keras@master but still not available with pip.
# TODO remove later.
def accuracy(y_true, y_pred):
# reshape in case it's in shape (num_samples, 1) instead of (num_samples,)
if K.ndim(y_true) == K.ndim(y_pred):
y_true = K.squeeze(y_true, -1)
# convert dense predictions to labels
y_pred_labels = K.argmax(y_pred, axis=-1)
y_pred_labels = K.cast(y_pred_labels, K.floatx())
return K.cast(K.equal(y_true, y_pred_labels), K.floatx())
model.compile(get_opt(), loss='sparse_categorical_crossentropy', metrics=[accuracy])
else:
# regression
x = Dense(output_len)(x)
x = Activation('linear')(x)
output_layer = x
model = Model(input_layer, output_layer)
model.compile(get_opt(), loss='mean_squared_error')
print('model.x = {}'.format(input_layer.shape))
print('model.y = {}'.format(output_layer.shape))
return model
def tcn_full_summary(model, expand_residual_blocks=True):
layers = model._layers.copy() # store existing layers
model._layers.clear() # clear layers
for i in range(len(layers)):
if isinstance(layers[i], TCN):
for layer in layers[i]._layers:
if not isinstance(layer, ResidualBlock):
if not hasattr(layer, '__iter__'):
model._layers.append(layer)
else:
if expand_residual_blocks:
for lyr in layer._layers:
if not hasattr(lyr, '__iter__'):
model._layers.append(lyr)
else:
model._layers.append(layer)
else:
model._layers.append(layers[i])
model.summary() # print summary
# restore original layers
model._layers.clear()
[model._layers.append(lyr) for lyr in layers]