-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenerateData.py
259 lines (232 loc) · 9.08 KB
/
generateData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
'''
Generate and skecth graphs used for downstream tasks.
Also parse and generate graph data from various real datasets, e.g. MSRC.
'''
import _init_paths
import utils
import graph
import networkx as nx
import torch
import numpy as np
import pickle
from tqdm import tqdm
import got_stochastic as st
import runGraph
import os
import grakel
import pdb
torch.set_default_tensor_type('torch.DoubleTensor')
def sketch_graph(graphs, dataset_cls, lo_dim, args):
'''
Run graph sketching.
Input: graphs: graphs to be dimension-reduced for.
'''
args.n = lo_dim
lo_graphs = []
lo_cls = []
args.n_epochs = 230 #250
for i, g in enumerate(tqdm(graphs, desc='sketching')):
args.Lx = utils.graph_to_lap(g) #graph.graph_dist(args, plot=False)
args.m = len(args.Lx)
try:
#rarely, 0.2% of time pytorch's eigenvalue finding doesn't converge
loss, P, Ly = graph.graph_dist(args, plot=False)
except RuntimeError as e:
# pdb.set_trace()
print(e)
continue
lo_graphs.append(utils.lap_to_graph(Ly))
lo_cls.append(dataset_cls[i])
return lo_graphs, lo_cls
def generate_real_data(dataset_name='msrc'):
'''
Parse graphs and generate Laplacians from real datasets.
'''
dataset = grakel.datasets.fetch_dataset(dataset_name)
graphs = dataset.data
target = [] #dataset.target
node_labels = []
lap_l = []
total_nodes = 0
for j, graph in enumerate(graphs):
g = grakel.Graph(graph_format='adjacency')
#geaph[1] eg {1: 3, 2: 3, 3: 3
#g_adj_l = g[0]
g.build_graph(*graph)
lap = g.laplacian()
#pdb.set_trace()
g1=utils.lap_to_graph(lap.copy())
if not nx.is_connected(g1):
print('not connected!')
continue
node_label = np.zeros((len(lap))) #[-1]*len(g[1])
if len(lap) < len(graph[1]):
print('len except!')
continue
k_prev = -1
for i, (k,l) in enumerate(graph[1].items()):
assert k > k_prev
k_prev = k
#pdb.set_trace()
try:
#node_label[k-1] = l
node_label[i] = l
except Exception as e:
print('Exception ', e)
#pdb.set_trace()
break
total_nodes += len(lap)
node_labels.append(node_label)
target.append(dataset.target[j])
lap_l.append(torch.from_numpy(lap))
print('dataset {} avg nodes {}'.format(dataset_name, total_nodes / len(lap_l)))
torch.save({'lap':lap_l, 'labels':node_labels, 'target':target}, 'data/{}_lap.pt'.format(dataset_name)) #os.path.join('data', dataset_name)))
return lap_l, node_labels, target
def test_FGW(args):
"""
Fused Gromov-Wasserstein distance
"""
import lib.graph as gwGraph
from lib.ot_distances import Fused_Gromov_Wasserstein_distance
args.m = 8
args.n = 4
if args.fix_seed:
torch.manual_seed(0)
#args.Lx = torch.randn(args.m*(args.m-1)//2) #torch.FloatTensor([[1, -1], [-1, 2]])
#args.Lx = realize_upper(args.Lx, args.m)
#pdb.set_trace()
g = nx.stochastic_block_model([4,4],[[0.9,0.1],[0.1,0.9]], seed = 8576)
#components = nx.connected_components(g)
g.remove_nodes_from(list(nx.isolates(g)))
args.m = len(g)
Lx = nx.laplacian_matrix(g, range(args.m)).todense()
args.Lx = torch.from_numpy(Lx).to(dtype=torch.float32) #+ torch.ones(args.m, args.m)/args.m
args.n_epochs = 150
'''
g2 = nx.stochastic_block_model([4,4],[[0.9,0.1],[0.1,0.9]])
g2.remove_nodes_from(list(nx.isolates(g2)))
args.n = len(g2)
'''
loss, P, L = graph.graph_dist(args, plot=False)
if isinstance(L, torch.Tensor):
L = L.numpy()
np.fill_diagonal(L, 0)
A = -L
g2 = nx.from_numpy_array(A)
gwdist = Fused_Gromov_Wasserstein_distance(alpha=0.8,features_metric='sqeuclidean')
g = gwGraph.Graph(g)
g2 = gwGraph.Graph(g2)
dist = gwdist.graph_d(g,g2)
print('GW dist ', dist)
###
g3 = nx.stochastic_block_model([4,4],[[0.9,0.1],[0.1,0.9]],seed=452)
g3.remove_nodes_from(list(nx.isolates(g3)))
args.m = len(g3)
Lx = nx.laplacian_matrix(g3, range(args.m)).todense()
args.Lx = torch.from_numpy(Lx).to(dtype=torch.float32) #+ torch.ones(args.m, args.m)/args.m
loss2, P2, L2 = graph.graph_dist(args, plot=False)
L=L2
if isinstance(L, torch.Tensor):
L = L.numpy()
np.fill_diagonal(L, 0)
A = -L
g4 = nx.from_numpy_array(A)
#gwdist = Fused_Gromov_Wasserstein_distance(alpha=0.8,features_metric='sqeuclidean')
g3 = gwGraph.Graph(g3)
g4 = gwGraph.Graph(g4)
dist = gwdist.graph_d(g3,g4)
print('GW dist ', dist)
pdb.set_trace()
def run_community_graph(args):
args.m = 12
args.n = 4
if args.fix_seed:
torch.manual_seed(0)
#args.Lx = torch.randn(args.m*(args.m-1)//2) #torch.FloatTensor([[1, -1], [-1, 2]])
#args.Lx = realize_upper(args.Lx, args.m)
#pdb.set_trace()
g = nx.stochastic_block_model([6,6],[[0.9,0.1],[0.1,0.9]], seed = 8576)
#components = nx.connected_components(g)
g.remove_nodes_from(list(nx.isolates(g)))
args.m = len(g)
Lx = nx.laplacian_matrix(g, range(args.m)).todense()
args.Lx = torch.from_numpy(Lx).to(dtype=torch.float32) #+ torch.ones(args.m, args.m)/args.m
args.n_epochs = 370 #100
graph.graph_dist(args)
def run_same_dim(args):
"""
When m = n, Ly converges to Lx and P converges to identity mx.
"""
args.Lx = torch.eye(args.m)*torch.abs(torch.randn((args.m, args.m)))*2 #utils.symmetrize(torch.randn((args.m, args.m)))
args.m = 5
args.n = 5
args.Lx = torch.randn(args.m*(args.m-1)//2) #torch.FloatTensor([[1, -1], [-1, 2]])
args.Lx = graph.realize_upper(args.Lx, args.m)
#args.Lx = torch.exp(torch.FloatTensor([[2, -2], [-2, 1]])) #good initializations?! checks & stability
args.n_epochs = 280
graph.graph_dist(args)
return
if __name__ == '__main__':
"""
Driver class for various methods in this script. Can comment or uncomment depending on application.
"""
args = utils.parse_args()
#The following can be uncommented to run a particular method.
#test_same_dim(args)
#run_community_graph(args)
#run_cyclic_graph(args)
#run_FGW(args)
#args.verbose = False
scheme = 'lo_hi' #in format of query_data. 'hi_lo'
if scheme == 'lo_hi':
q_dim, data_dim = 20, 20 #100
#q_dim, data_dim = 20, 30 #100
else:
q_dim, data_dim = 20, 10
args.n_per_cls = 500 #200 #20 #15 #5 #15 # 20 #5
#create_graphs(30, args, 'data/graphs{}.pkl'.format(30), n_graphs=args.n_per_cls) #do 30 to 10
if args.dataset_type == 'real':
dataset_name = args.dataset_name #e.g. 'IMDB-MULTI'
generate_real_data(dataset_name)
else:
#runGraph.create_graphs(q_dim, args, 'data/queries{}rand.pkl'.format(q_dim), n_graphs=10, low=data_dim)
runGraph.create_graphs(data_dim, args, 'data/train_graphs{}rand.pkl'.format(data_dim), n_graphs=args.n_per_cls, low=data_dim) #do 30 to 10
lo_dim = 10 #15 #25 #15 #q_dim
do_sketch_data = False
if do_sketch_data:
#This can be used to sketch previously generated graphs en masse
#'''
dataset, dataset_cls = utils.load_data('data/train_graphs{}rand.pkl'.format(data_dim))
#dataset = dataset[10:-50]
#dataset_cls = dataset_cls[10:-50]
#dataset = dataset[:20]
#dataset_cls = dataset_cls[:20]
lo_graphs, lo_cls = sketch_graph(dataset, dataset_cls, lo_dim, args)
with open('data/train_graphs_sketch{}_{}rand.pkl'.format(data_dim,lo_dim), 'wb') as f:
pickle.dump({'graphs':lo_graphs, 'labels':lo_cls}, f)
'''
#~~~#
queries, target = utils.load_data('data/queries{}rand.pkl'.format(q_dim))
lo_queries = sketch_graph(queries, lo_dim, args)
with open('data/queries_sketch{}_{}rand.pkl'.format(q_dim, lo_dim), 'wb') as f:
pickle.dump({'graphs':lo_queries, 'labels':target}, f)
'''
print('Done sketching graphs!')
'''
args.n_epochs = 150
use_sketch = True #True #False #False #True #True
dataset0, dataset_cls = utils.load_data('data/graphs{}rand.pkl'.format(data_dim))
queries0, target = utils.load_data('data/queries{}rand.pkl'.format(q_dim))
if use_sketch:
#lo_dim = 10
dataset, dataset_cls = utils.load_data('data/graphs_sketch{}_{}rand.pkl'.format(data_dim, lo_dim))
queries, target = utils.load_data('data/queries_sketch{}_{}rand.pkl'.format(q_dim, lo_dim))
else:
dataset, queries = dataset0, queries0
#queries, target = utils.load_data('data/queries{}.pkl'.format(8))
queries = queries[::3]
target = target[::3]
queries0 = queries0[::3]
#classify_st(dataset, queries, dataset_cls, target, args, dataset0=dataset0, queries0=queries0)
classify(dataset, queries, dataset_cls, target, args, dataset0=dataset0, queries0=queries0)
'''