-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
438 lines (388 loc) · 16.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
'''
Utilities functions for the framework.
'''
import pandas as pd
import numpy as np
import os
import argparse
import torch
import math
import numpy.linalg as linalg
import matplotlib.pyplot as plt
import networkx as nx
import pickle
import warnings
import sklearn.metrics
warnings.filterwarnings('ignore')
import pdb
torch.set_default_tensor_type('torch.DoubleTensor')
torch_dtype = torch.float64 #torch.float32
res_dir = 'results'
data_dir = 'data'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
#device = 'cpu' #Can set to CPU here for timing comparison
def parse_args():
parser = argparse.ArgumentParser()
#
parser.add_argument("--verbose", dest='verbose', action='store_const', default=False, const=True, help='Print out verbose info during optimization')
parser.add_argument("--seed", dest='fix_seed', action='store_const', default=False, const=True, help='Fix seed for reproducibility and fair comparison.')
parser.add_argument("--n_epochs", dest='n_epochs', type=int, default=300, help='Number of COPT iterations during training.')
parser.add_argument("--hike", dest='lr_hike', action='store_const', default=False, const=True, help='Use learning rate hiking. This is recommended for most applications.')
parser.add_argument("--hike_interval", dest='hike_interval', type=int, default=15, help='Number of iterations having *low loss* between lr hikes.')
parser.add_argument("--fast", dest='fast', action='store_const', default=False, const=True, help='Use fast kernel, in particular multiscale laplacian')
parser.add_argument("--early_stopping", action='store_true', default=False, help='stop training early if loss repeatedly reaches below some threshold, useful for sketching.')
parser.add_argument("--dataset_type", type=str, default='synthetic', help='dataset type, can be "synthetic" or "real"')
parser.add_argument("--dataset_name", type=str, default='PROTEINS', help='dataset name, will be ignored if dataset_type is synthetic')
parser.add_argument("--m", default=30, type=int, help='Number of vertices in graph X, e.g. query graph, useful especially when testing')
parser.add_argument("--n", default=30, type=int, help='Number of vertices in graph Y, e.g. dataset graph, useful especially when testing')
parser.add_argument("--sinkhorn_iter", type=int, default=10, help='Number of Sinkhorn scaling iterations during optimization')
parser.add_argument("--grid_search", dest='grid_search', action='store_const', default=False, const=True, help='grid search for learning SVC classifier')
parser.add_argument("--compress_fac", default=-1, type=int, help='Factor of compression, e.g. 2 means reduce to half as many vertices')
parser.add_argument("--got_it", dest='st_it', type=int, default=5, help='Number of Sinkhorn iterations for GOT')
parser.add_argument("--got_tau", dest='st_tau', type=float, default=1, help='Number of Sinkhorn iterations for GOT')
parser.add_argument("--got_n_sample", dest='st_n_samples', type=int, default=10, help='Number of samples in stochastic sampling for GOT')
parser.add_argument("--got_n_epochs", dest='st_epochs', type=int, default=1000, help='Number of Sinkhorn iterations for GOT')
parser.add_argument("--got_lr", dest='st_lr', type=float, default=.5, help='Number of Sinkhorn iterations for GOT')
parser.add_argument("--gw_alpha", dest='gw_alpha', type=float, default=.8, help='alpha parameter for GW')
parser.add_argument("--gw_metric", dest='gw_metric', type=str, default='sqeuclidean', help='features metric for GW')
opt = parser.parse_args()
return opt
def create_graph_lap(n):
"""
Create graph laplacian of given size.
"""
g = nx.random_geometric_graph(n, .5)
#pdb.set_trace()
#ensure connected!
Lx = nx.laplacian_matrix(g, range(n))
Lx = np.array(Lx.todense())
Lx = np.array([[0, -.3, -.9],[-.3, 0, 0],[-.9, 0,0]])
return Lx
def graph_to_lap(g):
"""
Get Laplacian from nx graph g
"""
Lx = nx.laplacian_matrix(g).todense() #args.Lx[torch.eye(len(args.Lx), dtype=torch.uint8)] = args.Lx.sum(0)
Lx = torch.from_numpy(Lx).to(dtype=torch_dtype)
return Lx
def lap_to_graph(L):
if isinstance(L, torch.Tensor):
L = L.cpu().numpy()
L = L.copy()
np.fill_diagonal(L, 0)
return nx.from_numpy_array(-L)
def canonicalize_mx(mx):
"""
Sort columns then rows to canonicalize mx.
Ensures symmetry.
Square PSD matrix.
"""
mx1 = mx.clone()
diag = mx.diag()
idx = diag.argsort(dim=0)
n_mx = len(mx)
for i in range(n_mx):
mx[i] = mx1[idx[i]]
mx1 = mx.clone()
for i in range(n_mx):
mx[:, i] = mx1[:, idx[i]]
return mx
def create_graph(n, gtype=None, seed=None, params={}):
"""
Generate graph on n nodes of given type.
"""
total_iter = 100
cnt = 0
while True:
if gtype == 'block':
if params['n_blocks'] == 3:
m = n // 3
g = nx.stochastic_block_model([m, m, n-2*m],[[0.98,0.01,.01],[0.01,0.98,.01],[0.01,.01,.98]], seed=seed)
elif params['n_blocks'] == 4:
m = n // 4
g = nx.stochastic_block_model([m, m, m, n-3*m],[[.97,0.01,0.01,.01],[.01,0.97,0.01,.01],[.01,0.01,0.97,.01],[.01,0.01,0.01,.97] ], seed=seed)
else:
m = n // 2
g = nx.stochastic_block_model([m, n-m],[[0.99,0.01],[0.01,0.99]], seed=seed)
elif gtype == 'strogatz':
g = nx.connected_watts_strogatz_graph(n, max(n//4, 3), p=.05, seed=seed)
elif gtype == 'random_regular':
#d = max(n//4, 2) d*n must be even
d = max(n//8, 2)
if n*d % 2 == 1:
n += 1
g = nx.random_regular_graph(d, n, seed=seed)
elif gtype == 'binomial':
#also erdos renyi graph
prob = params['prob']
g = nx.binomial_graph(n, prob, seed=seed)
elif gtype == 'barabasi':
d = max(4, n//6)
g = nx.barabasi_albert_graph(n, d, seed=seed)
elif gtype == 'powerlaw_tree':
g = nx.random_powerlaw_tree(n, gamma=3, tries=1300, seed=seed)
elif gtype == 'caveman':
n_cliques = params['n_cliques']
clique_sz = params['clique_sz']
assert n_cliques * clique_sz == n
g = nx.connected_caveman_graph(n_cliques, clique_sz)
#elif gtype == 'binomial':
# prob = params['prob']
# g = nx.binomial_graph(n, prob, seed=seed)
elif gtype == 'random_geometric':
radius = params['radius']
g = nx.random_geometric_graph(n, radius, seed=seed)
elif gtype == 'barbell':
#note these are not numbers of nodes!
g = nx.barbell_graph(n//2, 1)
elif gtype == 'ladder':
g = nx.ladder_graph(n)
elif gtype == 'grid':
g = nx.grid_graph([n,n])
elif gtype == 'hypercube':
g = nx.hypercube_graph(n)
elif gtype == 'pappus':
g = nx.pappus_graph()
elif gtype == 'star':
g = nx.star_graph(n)
elif gtype == 'cycle':
g = nx.cycle_graph(n)
elif gtype == 'wheel':
g = nx.wheel_graph(n)
elif gtype == 'lollipop':
g = nx.lollipop_graph(n//2, 1)
else:
raise Exception('graph type not supported ', gtype)
remove_isolates(g)
cnt += 1
if nx.is_connected(g) or cnt > total_iter:
if cnt > total_iter:
g = g.subgraph(sorted(nx.connected_components(g), key=len)[-1]).copy()
break
return g
def fetch_data(dataset_name):
#this assumes data lap file exists.
#torch.save({'lap':lap_l, 'labels':node_labels, 'target':target}, '{}_lap.pt'.format(dataset_name))
data = torch.load('{}_lap.pt'.format(dataset_name))
return data['lap'], data['labels'], data['target']
def fetch_data_graphs(dataset_name):
"""
#this assumes data (graph laplacians) are have been created or downloaded to file dataname_lap.pt.
"""
#torch.save({'lap':lap_l, 'labels':node_labels, 'target':target}, '{}_lap.pt'.format(dataset_name))
try:
data = torch.load('data/{}_lap.pt'.format(dataset_name))
except Exception:
raise Exception('Dataset {} graph data not created yet. More data can be created using the generateData.py script as in README.'.format(dataset_name))
graphs = []
for g in data['lap']:
graph = lap_to_graph(g)
'''
for i in range(len(g)):
graph.add_node(i)
pdb.set_trace()
'''
graphs.append(graph)
return graphs, data['labels'], np.array(data['target'])
def view_graph(L, soft_edge=False, labels=None, name=''):
"""
Input:
L: laplacian. Square Tensor (not upper triangular)
labels: node labels.
"""
plt.clf()
if isinstance(L, torch.Tensor):
L = L.cpu().numpy()
L = L.copy()
#make diagonal 0?! negate?
np.fill_diagonal(L, 0)
L *= -1
#pdb.set_trace()
g = nx.from_numpy_array(L)
fig = plt.figure()
plt.axis('off')
ax = plt.gca()
#ax.axis('off')
#layout = nx.kamada_kawai_layout(g)
layout = nx.spring_layout(g)
nx.draw_networkx_nodes(g, layout, node_size=500, alpha=0.5, cmap=plt.cm.RdYlGn, node_color='r', ax=ax)
if labels is None:
nx.draw_networkx_labels(g, layout, font_color='w', font_weight='bold', font_size=15, ax=ax)
else:
#labels can be determined from P
nx.draw_networkx_labels(g, layout, labels=labels, font_color='k', font_size=12, ax=ax) #13
if soft_edge:
#sorting edges can be used to determine the cutoff
#elarge = [(u, v) for (u, v, d) in g.edges(data=True) if d['weight'] > 2]
#esmall = [(u, v) for (u, v, d) in g.edges(data=True) if d['weight'] <= 2 and d['weight'] > .99] #move to args!
elarge = [(u, v) for (u, v, d) in g.edges(data=True) if d['weight'] > .5] #.5
esmall = [(u, v) for (u, v, d) in g.edges(data=True) if d['weight'] <= .5 and d['weight'] > .19] #move to args! 3, 1.9 .2
nx.draw_networkx_edges(g, layout, edgelist=elarge, width=3.5, ax=ax)
nx.draw_networkx_edges(g, layout, edgelist=esmall, wifth=3, ax=ax)
else:
nx.draw_networkx_edges(g, layout, ax=ax)
fig.savefig('data/view_graph_{}.jpg'.format(name))
print('plot saved to {}'.format('data/view_graph_{}.jpg'.format(name)))
plt.show()
def plot_confusion(tgt, pred, labels=None, name=''):
"""
Input:
tgt, pred: target and predicted classes.
labels: node labels.
"""
plt.clf()
fig = plt.figure()
#if isinstance(L, torch.Tensor):
# L = L.cpu().numpy()
ax = plt.gca()
mx = sklearn.metrics.confusion_matrix(tgt, pred)
#pdb.set_trace()
img = plt.matshow(mx)
path = 'data/confusion_mx_{}.jpg'.format(name)
#plt.imsave(path, img)
ax.legend()
name2label = {'gw_cls':'GW', 'ot_cls':'COPT', 'combine_cls':'[COPT + GW]'}
plt.title('{} Predictions'.format(name2label[name]), fontsize=20)
plt.savefig(path)
print('fig saved to ', path)
def plot_search_acc():
'''
Plot search acc.
'''
plt.clf()
x_l = [1, 3, 5, 10, 15]
ot_acc = [0.9721962,0.9866296,0.9941481333,0.998,0.998]
svd_acc = [0.814787,0.894257037,0.9349997,0.9774814073,0.9888888777]
ot_std = [0.005516745247,0.003174584773,0.0002565744596,0.003464101615,0.003464101615]
svd_std = [0.01152346983,0.02409426815,0.02220130725,0.009109368462,0.009622514205]
fig = plt.figure()
#ax = ax
#plt.plot(x_l, ot_acc, '-o', label='COPT ')
plt.errorbar(x_l, ot_acc, yerr=ot_std, marker='o', label='COPT sketches')
#plt.plot(x_l, svd_acc, '-*', label='SVD ')
plt.errorbar(x_l, svd_acc, yerr=svd_std, marker='+', label='Spectral projections')
plt.title('Classification acc of [COPT, GW] vs [spectral projections, GW] pipelines')
plt.legend()
plt.xlabel('Number of candidates allowed to 2nd stage')
plt.ylabel('Classification accuracy')
path = 'data/search_acc.jpg'#.format(name)
fig.savefig(path)
print('fig saved to ', path)
def create_dir(path):
if not os.path.exists(path):
os.mkdir(path)
#create_dir(res_dir)
def normalizedMI(ar1, ar2):
'''
normalized mutual information of two input cluserings.
Input: np arrays.
'''
score = sklearn.metrics.normalized_mutual_info_score(ar1, ar2)
return score
def remove_edges(L, n_remove=1, seed=None):
'''
Adapted from GOT.
'''
rng = np.random.RandomState(seed)
G = lap_to_graph(L)
edges = np.triu(L, k=1).nonzero()
removed = 0
for idx in rng.permutation(edges[0].size):
u, v = edges[0][idx], edges[1][idx]
G.remove_edge(u,v)
if nx.is_connected(G):
removed += 1
else:
G.add_edge(u,v)
if removed == n_remove:
break
return graph_to_lap(G) #nx.laplacian_matrix(G).todense()
def permute_nodes(l1, seed=None):
'''
Adapted from GOT.
'''
np.random.seed(seed)
n = len(l1)
idx = np.random.permutation(n)
P_true = np.eye(n)
P_true = P_true[idx]
l2 = np.array(P_true @ l1 @ P_true.T)
#pdb.set_trace()
return np.double(l2), idx #P_true
def symmetrize(mx, inplace=True):
"""
Make the matrix symmetric (according to upper right). In place.
Input: torch tensor, square.
"""
m, n = mx.size()
assert m == n
mask = torch.ones(m, m)
mask = torch.tril(mask, diagonal=-1)
#upper = torch.triu(mx).t()
if not inplace:
mx = mx.clone()
mx[mask > 0] = torch.triu(mx, diagonal=1).t()[mask > 0]
return mx
def remove_isolates(g):
"""
Remove isolated nodes from nx graph.
"""
g.remove_nodes_from(list(nx.isolates(g)))
def load_data(fname):
with open(fname, 'rb') as f:
data = pickle.load(f)
graphs = data['graphs']
labels = data['labels']
return graphs, labels
def read_lines(path):
with open(path, 'r') as file:
return file.readlines()
def parse_cls(st):
ar = st.split('., ')
return [int(i) for i in ar]
def plot_confusions():
#plot_confusion(tgt, pred, labels=None, name=''):
ot_cls = '0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 4., 1., 1., 4., 1., 1., 4., 1., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 6., 6., 6., 6., 6., 6., 6., 6., 6., 6., 6., 9., 6., 9., 9., 9., 6., 6., 6., 9'
gw_cls = '0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 6., 1., 1., 1., 1., 6., 6., 1., 6., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 6., 5., 6., 6., 6., 6., 5., 6., 6., 6., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9'
combine_cls = '0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 4., 1., 1., 4., 1., 1., 1., 1., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 6., 5., 6., 6., 6., 6., 5., 6., 6., 6., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9'
ot_cls = parse_cls(ot_cls)
gw_cls = parse_cls(gw_cls)
combine_cls = parse_cls(combine_cls)
tgt_cls = []
for i in [0, 1, 4, 5, 6, 9]:
tgt_cls.extend([i]*10)
names = ['ot_cls', 'gw_cls', 'combine_cls']
for i, pred in enumerate([ot_cls, gw_cls, combine_cls]):
plot_confusion(tgt_cls, pred, name=names[i])
def plot_convergence():
'''
plot Convergence
'''
conv = '99.77512221820409, 47.0570797352225, 45.454712183248795, 43.46666639511483, 40.9052209134619, 34.46097733377226, 24.431260224317242, 23.51762172579995, 22.485459983772515, 22.106446259828203, 21.534230884767375, 21.463743674621867'
ar = conv.split(', ')
conv_ar = [float(f) for f in ar]
x_l = [20*i for i in list(range(len(conv_ar)))]
fig = plt.figure()
#plt.errorbar(x_l, ot_acc, yerr=ot_std, marker='o', label='COPT sketches')
plt.plot(x_l, conv_ar, '-o', label='COPT distance')
#plt.errorbar(x_l, svd_acc, yerr=svd_std, marker='+', label='Spectral projections')
plt.title('COPT distance convergence sketching a 50-node graph to 15 nodes')
plt.legend()
plt.xlabel('Number of iterations')
plt.ylabel('COPT distance')
path = 'data/convergence.jpg'#.format(name)
fig.savefig(path)
print('fig saved to ', path)
if __name__ == '__main__':
"""
For testing utils functions.
"""
'''
n = 2
L = create_graph_lap(n)
view_graph(L, soft_edge=True)
'''
#plot_search_acc()
plot_cls_acc()
#plot_convergence()
#plot_confusions()