-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmilp_ranker_equal.py
197 lines (181 loc) · 7.64 KB
/
milp_ranker_equal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import numpy as np
from gurobipy import GRB, LinExpr, Model
def find_ranking(comparisons, equal_width=0.2, max_rank=-1, verbose=False):
"""
Find the least changes to a set of comparisons so that they are consistent
(transitive), it returns a topological ranking.
comparisons A dictionary with tuple keys in the form of (i, j), values
are scalars indicating the probability of i > j. It is
assumed that comparisons are symmetric. Use 0 for i < j,
0.5 for i == j, and 1 for i > j (and any value in between).
equal_width 0..0.5-equal_width/2 is considered '<=' and 0.5..0.5+equal_width/2
is considered '>='. In between it is considered to be '=='.
max_rank Maximal rank, a low value forces the model to choose more
equal cases.
verbose Whether to print gurobi's progress.
Returns:
A tuple of size two:
0) Ranking derived from topological sort (list of ranks in order of
nodes);
1) Sum of absolute changes to the comparisons.
"""
# remove unnecessary variables
comparisons = {(i, j) if i < j else (j, i): value if i < j else 1 - value
for (i, j), value in comparisons.items()}
nodes = np.unique(
[i for ij in comparisons.keys() for i in ij])
# define variables
model = Model('comparison')
model.setParam('OutputFlag', verbose)
values = np.fromiter(comparisons.values(), dtype=float)
assert values.max() <= 1 and values.min() >= 0
# variables to encode the error of comparisons
E_ij = model.addVars(comparisons.keys(), name='e_ij', vtype=GRB.CONTINUOUS,
ub=1.0-values, lb=-values)
# variables to encode hard choice of >=, <=, ==
Ge_ij = model.addVars(comparisons.keys(), name='ge_ij', vtype=GRB.BINARY)
Le_ij = model.addVars(comparisons.keys(), name='le_ij', vtype=GRB.BINARY)
Eq_ij = model.addVars(comparisons.keys(), name='eq_ij', vtype=GRB.BINARY)
# variables to help with transitivity in non-fully connected graphs
if max_rank < 1:
max_rank = len(nodes)
R_i = model.addVars(nodes, name='r_i', vtype=GRB.CONTINUOUS, lb=0,
ub=max_rank)
# variables to emulate abs
T_ij_pos = {}
T_ij_neg = {}
index = (values != 1) & (values != 0)
T_ij_pos = model.addVars(
(ij for ij, value in comparisons.items() if value not in [0.0, 1.0]),
vtype=GRB.CONTINUOUS, name='T_ij_pos', lb=0, ub=1-values[index])
T_ij_neg = model.addVars(
(ij for ij, value in comparisons.items() if value not in [0.0, 1.0]),
vtype=GRB.CONTINUOUS, name='T_ij_neg', lb=0, ub=values[index])
model.update()
# emulate abs for non-binary comparisons: E_ij = T_ij_pos - T_ij_neg
model.addConstrs(
(E_ij[ij] == T_ij_pos[ij] - T_ij_neg[ij] for ij in T_ij_pos),
'E_ij = T_ij_pos - T_ij_neg')
# hard decision of >=, <=, and ==
lower_bound = 0.5 - equal_width / 2.0
upper_bound = 0.5 + equal_width / 2.0
# <=
model.addConstrs(
(E_ij[ij] + comparisons[ij] - upper_bound <= ge_ij
for ij, ge_ij in Ge_ij.items()), 'ge_ij_lower_bound')
model.addConstrs(
(E_ij[ij] + comparisons[ij] - upper_bound >= -1 + ge_ij
for ij, ge_ij in Ge_ij.items()), 'ge_ij_upper_bound')
# >=
model.addConstrs(
(E_ij[ij] + comparisons[ij] - lower_bound >= -le_ij
for ij, le_ij in Le_ij.items()), 'le_ij_lower_bound')
model.addConstrs(
(E_ij[ij] + comparisons[ij] - lower_bound <= 1 - le_ij
for ij, le_ij in Le_ij.items()), 'le_ij_upper_bound')
# ==
model.addConstrs(
(le + eq + ge == 1 for le, eq, ge in zip(
Le_ij.values(), Eq_ij.values(), Ge_ij.values())), 'eq_ij')
# transitivity
for (i, j), eq_a in Eq_ij.items():
le_a = Le_ij[i, j]
ge_a = Ge_ij[i, j]
for k in nodes:
j_, k_ = j, k
if j > k:
j_, k_ = k, j
eq_b = Eq_ij.get((j_, k_), None)
if eq_b is None:
continue
else:
le_b = Le_ij[j_, k_]
ge_b = Ge_ij[j_, k_]
if j_ != j:
le_b, ge_b = ge_b, le_b
i_, k_ = i, k
if i > k:
i_, k_ = k, i
eq_c = Eq_ij.get((i_, k_), None)
if eq_c is None:
continue
else:
le_c = Le_ij[i_, k_]
ge_c = Ge_ij[i_, k_]
if i_ != i:
le_c, ge_c = ge_c, le_c
# a <= b and b <= c -> a <= c
model.addLConstr(
ge_a + ge_b, GRB.LESS_EQUAL, 1 + ge_c,
f'transitivity_ge_{i},{j},{k}')
# a >= b and b >= c -> a >= c
model.addLConstr(
le_a + le_b, GRB.LESS_EQUAL, 1 + le_c,
f'transitivity_le_{i},{j},{k}')
# a <= b and b == c -> a <= c
model.addLConstr(
le_a + eq_b, GRB.LESS_EQUAL, 1 + le_c,
f'transitivity_leeq_{i},{j},{k}')
# a == b and b <= c -> a <= c
model.addLConstr(
eq_a + le_b, GRB.LESS_EQUAL, 1 + le_c,
f'transitivity_eqle_{i},{j},{k}')
# a >= b and b == c --> a >= c
model.addLConstr(
ge_a + eq_b, GRB.LESS_EQUAL, 1 + ge_c,
f'transitivity_geeq_{i},{j},{k}')
# a == b and b >= c --> a >= c
model.addLConstr(
eq_a + ge_b, GRB.LESS_EQUAL, 1 + ge_c,
f'transitivity_eqge_{i},{j},{k}')
# a == b and b == c --> a == c
model.addLConstr(
eq_a + eq_b, GRB.LESS_EQUAL, 1 + eq_c,
f'transitivity_eq_{i},{j},{k}')
# transitivity helper (for not-fully connected graphs)
# also provides a latent rank
big_m = max_rank
model.addConstrs(
((1 - ge_ij) * big_m + R_i[i] >= R_i[j] + 1 for (i, j), ge_ij in Ge_ij.items()),
'rank_transitivity_larger')
model.addConstrs(
((1 - le_ij) * big_m + R_i[j] >= R_i[i] + 1 for (i, j), le_ij in Le_ij.items()),
'rank_transitivity_smaller')
model.addConstrs(
((1 - eq_ij) * big_m + R_i[j] >= R_i[i] for (i, j), eq_ij in Eq_ij.items()),
'rank_transitivity_equal1')
model.addConstrs(
((1 - eq_ij) * big_m + R_i[i] >= R_i[j] for (i, j), eq_ij in Eq_ij.items()),
'rank_transitivity_equal2')
# objective function
objective = LinExpr()
for ij, value in comparisons.items():
if value == 1.0:
objective += -E_ij[ij]
elif value == 0.0:
objective += E_ij[ij]
else:
objective += T_ij_pos[ij] + T_ij_neg[ij]
model.setObjective(objective, GRB.MINIMIZE)
# solve
model.optimize()
# verify abs emulation: one T_ij has to be 0
for ij, value in T_ij_pos.items():
assert value.X == 0 or T_ij_neg[ij] == 0, \
f'T_{ij} pos {value.X} neg {T_ij_neg[ij]}'
# find minimal Rs
model_ = Model('comparison')
model_.setParam('OutputFlag', verbose)
R_i = model_.addVars(nodes, name='r_i', vtype=GRB.CONTINUOUS, lb=0,
ub=len(nodes))
for ((i, j), ge_ij), le_ij in zip(Ge_ij.items(), Le_ij.values()):
if ge_ij.x == 1:
model_.addConstr(R_i[i] >= R_i[j] + 1)
elif le_ij.x == 1:
model_.addConstr(R_i[j] >= R_i[i] + 1)
else:
model_.addConstr(R_i[j] == R_i[i])
model_.setObjective(R_i.sum(), GRB.MINIMIZE)
model_.optimize()
return [model_.getVarByName(f'r_i[{i}]').X for i in range(len(nodes))], \
model.objVal