-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathautoclust_topn.m
executable file
·56 lines (51 loc) · 2.58 KB
/
autoclust_topn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
% Author: Carl Doersch (cdoersch at cs dot cmu dot edu)
%
% Get the top detections for each detector, based on the results of
% autoclust_detect. The set of detectors to mine are given in
% ds.batch.round.detectors(dsidx), where ds.batch.round.selectedClust(dsidx)
% is their ids. Note that this is meant to run in the dsmapreduce allatonce
% mode, so dsidx may be a vector. ds.batch.round.iminds gives the image ids
% that autoclust_detect was run on, and ds.batch.round.tovalon/totrainon are
% the image ids for the validation and training sets. ds.ispos indicates
% whether each image (by id) is from the positive set. We find the top n for
% 3 sets: ds.batch.round.traintopN is the top 20 in the positive training set;
% ds.batch.round.validtopN is the top 20 in the positive validation set (used
% for the next round of training), and ds.batch.round.alltopN is the top 100
% in both the positive and negative validation sets (used for display).
% ds.batch.round.purity is the fraction of ds.batch.round.alltopN that is
% from the positive set.
myaddpath;
%if(0)
imgs=dsload('.ds.imgs');
ispos=dsload('ds.ispos');
dsload('ds.batch.round.detectors');
dsload('ds.batch.round.selectedClust');
dsload('ds.batch.round.tovalon');
dsload('ds.batch.round.totrainon');
dsload('ds.batch.round.iminds');
numTopN = 20;
maxOverlap = 0.1;
% alldets=[];
% for(k=1:numel(ds.batch.round.detections{k}))
% tmpdets=simplifydets(ds.batch.round.detections{k});
% alldets=[alldets;tmpdets];
% end
detObj=PresenceDetectionResults2(dsidx,numel(ds.batch.round.selectedClust),ds.batch.round.iminds);
traintopN=getTopNDetsPerCluster2(detObj,maxOverlap,ds.batch.round.totrainon(ispos(ds.batch.round.totrainon)==1),numTopN);
valtopN=getTopNDetsPerCluster2(detObj,maxOverlap,ds.batch.round.tovalon(ispos(ds.batch.round.tovalon)==1),numTopN);
for(i=1:numel(valtopN))
if(numel(unique([valtopN{i}.imgIds]))~=numel(valtopN{i}.imgIds))
throw(MException('ac:valtopn',['valtopn ' num2str(dsidx(i)) ' contains repeats']));
end
end
alltopN=getTopNDetsPerCluster2(detObj,maxOverlap,ds.batch.round.tovalon,100);
%mycity=dsload('.ds.mycity');
%for(i=1:numel(dsidx))
% purity(i)=sum(ismember({imgs{ds.conf.currimset}(alltopN{i}.imgIds).city},mycity))./numel(alltopN{i});
%end
for(i=1:numel(dsidx))
{'ds.batch.round.traintopN{dsidx(i)}','traintopN{i}'};dsup;
{'ds.batch.round.validtopN{dsidx(i)}','valtopN{i}'};dsup;
{'ds.batch.round.alltopN{dsidx(i)}','alltopN{i}'};dsup;
% {'ds.batch.round.purity{dsidx(i)}','purity(i)'};dsup;
end