forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathae732e01-04b2-4665-b570-a77210e73e28.txt
2406 lines (2335 loc) · 151 KB
/
ae732e01-04b2-4665-b570-a77210e73e28.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
====================================================================================================
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
if group['nesterov']:
g = g.add(buf, alpha=momentum)
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.dim = dim
self.base = base
self.inv_freq = None
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim))
self.seq_len_cached = seq_len
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
self.cos_cached = freqs.cos().bfloat16()
self.sin_cached = freqs.sin().bfloat16()
return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
def apply_rotary_emb(x, cos, sin):
assert x.ndim == 4 # multihead attention
d = x.shape[3]//2
x1 = x[..., :d]
x2 = x[..., d:]
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat([y1, y2], 3).type_as(x)
class CastedLinear(nn.Linear):
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.n_head = config.n_head
self.n_embd = config.n_embd
self.head_dim = self.n_embd // self.n_head
assert self.n_embd % self.n_head == 0
self.c_q = CastedLinear(self.n_embd, self.n_embd, bias=False)
self.c_k = CastedLinear(self.n_embd, self.n_embd, bias=False)
self.c_v = CastedLinear(self.n_embd, self.n_embd, bias=False)
# output projection
self.c_proj = CastedLinear(self.n_embd, self.n_embd, bias=False)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
self.rotary = Rotary(self.head_dim)
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
def forward(self, x, v1, block_mask):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
k = self.c_k(x).view(B, T, self.n_head, self.head_dim)
v = self.c_v(x).view(B, T, self.n_head, self.head_dim)
if v1 is None:
v1 = v # This happens if we are in the first block. v needs to be accessed by subsequent blocks
v = (1 - self.lamb) * v + self.lamb * v1.view_as(v) # @Grad62304977
cos, sin = self.rotary(q)
q, k = F.rms_norm(q, (q.size(-1),)), F.rms_norm(k, (k.size(-1),)) # QK norm suggested by @Grad62304977
q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y, v1
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = CastedLinear(config.n_embd, 4 * config.n_embd, bias=False)
self.c_proj = CastedLinear(4 * config.n_embd, config.n_embd, bias=False)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config)
self.mlp = MLP(config)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, v1, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x1, v1 = self.attn(F.rms_norm(x, (x.size(-1),)), v1, block_mask)
x = x + x1
x = x + self.mlp(F.rms_norm(x, (x.size(-1),)))
return x, v1
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size, bias=False)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = F.rms_norm(x, (x.size(-1),)) # @Grad62304977
x0 = x
v1 = None
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x, v1 = self.transformer.h[i](x, v1, x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x, v1 = self.transformer.h[self.num_encoder_layers + i](x, v1, x0, block_mask)
x = F.rms_norm(x, (x.size(-1),))
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, B, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.B = B
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * B * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.B * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.B * self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.B*self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
device_batch_size : int = 1 # batch size, in sequences, per device
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1750 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 640 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write('='*100 + '\n')
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
B, T = args.device_batch_size, args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (B * T * ddp_world_size) == 0
val_steps = args.val_tokens // (B * T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (B * ddp_world_size) == 0
train_accumulation_steps = args.batch_size // (B * ddp_world_size)
# load tokens
train_loader = DistributedDataLoader(args.input_bin, B, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, B, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# CUDNN attention is ~4ms faster than Flash, but doesn't get selected by default in PyTorch 2.5.1
from torch.backends.cuda import enable_cudnn_sdp, enable_flash_sdp, enable_math_sdp, enable_mem_efficient_sdp
enable_cudnn_sdp(True)
enable_flash_sdp(False)
enable_mem_efficient_sdp(False)
enable_math_sdp(False)
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# Set the attention blocksize for the current step, in chunks of 64
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
train_loss = loss.detach()
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
if i < train_accumulation_steps:
with model.no_sync(): # there's no need to sync gradients every accumulation step
loss.backward()
else:
loss.backward() # just sync on the last step
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241124+cu124 compiled for CUDA 12.4
nvidia-smi:
Sun Nov 24 23:58:04 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 555.42.06 Driver Version: 555.42.06 CUDA Version: 12.5 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA H100 80GB HBM3 Off | 00000000:18:00.0 Off | 0 |
| N/A 32C P0 69W / 700W | 4MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 Off | 00000000:2A:00.0 Off | 0 |
| N/A 37C P0 116W / 700W | 36MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 Off | 00000000:3A:00.0 Off | 0 |
| N/A 39C P0 114W / 700W | 530MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 Off | 00000000:5D:00.0 Off | 0 |
| N/A 32C P0 114W / 700W | 530MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 Off | 00000000:84:00.0 Off | 0 |
| N/A 32C P0 112W / 700W | 36MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 Off | 00000000:8B:00.0 Off | 0 |
| N/A 38C P0 117W / 700W | 530MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 Off | 00000000:91:00.0 Off | 0 |
| N/A 35C P0 113W / 700W | 530MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 Off | 00000000:E4:00.0 Off | 0 |
| N/A 32C P0 116W / 700W | 530MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 1 N/A N/A 31614 C /usr/bin/python3 0MiB |
| 2 N/A N/A 31615 C /usr/bin/python3 0MiB |
| 3 N/A N/A 31616 C /usr/bin/python3 0MiB |
| 4 N/A N/A 31617 C /usr/bin/python3 0MiB |
| 5 N/A N/A 31618 C /usr/bin/python3 0MiB |
| 6 N/A N/A 31619 C /usr/bin/python3 0MiB |
| 7 N/A N/A 31620 C /usr/bin/python3 0MiB |
+-----------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1800000000 across 18 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1750 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1750 train_loss:10.8258 train_time:24777ms step_avg:nanms
step:2/1750 train_loss:10.0696 train_time:24886ms step_avg:nanms
step:3/1750 train_loss:8.3467 train_time:25030ms step_avg:nanms
step:4/1750 train_loss:7.5907 train_time:25177ms step_avg:nanms
step:5/1750 train_loss:7.4986 train_time:25323ms step_avg:nanms
step:6/1750 train_loss:6.9888 train_time:25470ms step_avg:nanms
step:7/1750 train_loss:7.1867 train_time:25618ms step_avg:nanms
step:8/1750 train_loss:6.7462 train_time:25765ms step_avg:nanms
step:9/1750 train_loss:6.6415 train_time:25913ms step_avg:nanms
step:10/1750 train_loss:6.5114 train_time:26063ms step_avg:nanms
step:11/1750 train_loss:6.4809 train_time:110ms step_avg:nanms
step:12/1750 train_loss:6.3664 train_time:258ms step_avg:nanms
step:13/1750 train_loss:6.2703 train_time:404ms step_avg:134.66ms
step:14/1750 train_loss:6.1918 train_time:552ms step_avg:138.01ms
step:15/1750 train_loss:6.1907 train_time:699ms step_avg:139.89ms
step:16/1750 train_loss:6.1304 train_time:847ms step_avg:141.11ms
step:17/1750 train_loss:6.2163 train_time:994ms step_avg:141.96ms
step:18/1750 train_loss:6.0114 train_time:1143ms step_avg:142.85ms
step:19/1750 train_loss:6.0561 train_time:1289ms step_avg:143.18ms
step:20/1750 train_loss:5.7053 train_time:1438ms step_avg:143.76ms
step:21/1750 train_loss:6.0442 train_time:1584ms step_avg:144.00ms
step:22/1750 train_loss:6.2556 train_time:1732ms step_avg:144.29ms
step:23/1750 train_loss:5.9100 train_time:1879ms step_avg:144.55ms
step:24/1750 train_loss:6.0771 train_time:2026ms step_avg:144.71ms
step:25/1750 train_loss:5.7909 train_time:2173ms step_avg:144.89ms
step:26/1750 train_loss:5.7070 train_time:2321ms step_avg:145.09ms
step:27/1750 train_loss:5.9017 train_time:2468ms step_avg:145.17ms
step:28/1750 train_loss:5.5325 train_time:2617ms step_avg:145.36ms
step:29/1750 train_loss:5.7746 train_time:2765ms step_avg:145.51ms
step:30/1750 train_loss:5.5632 train_time:2911ms step_avg:145.53ms
step:31/1750 train_loss:5.5483 train_time:3060ms step_avg:145.69ms
step:32/1750 train_loss:5.3963 train_time:3205ms step_avg:145.70ms
step:33/1750 train_loss:5.7032 train_time:3353ms step_avg:145.79ms
step:34/1750 train_loss:5.6029 train_time:3500ms step_avg:145.84ms
step:35/1750 train_loss:5.7279 train_time:3647ms step_avg:145.87ms
step:36/1750 train_loss:5.6539 train_time:3794ms step_avg:145.92ms
step:37/1750 train_loss:5.5536 train_time:3942ms step_avg:145.99ms
step:38/1750 train_loss:5.4202 train_time:4088ms step_avg:146.01ms
step:39/1750 train_loss:5.4139 train_time:4237ms step_avg:146.11ms
step:40/1750 train_loss:5.3482 train_time:4384ms step_avg:146.15ms
step:41/1750 train_loss:5.3373 train_time:4532ms step_avg:146.19ms
step:42/1750 train_loss:5.2742 train_time:4679ms step_avg:146.23ms
step:43/1750 train_loss:5.3617 train_time:4826ms step_avg:146.26ms
step:44/1750 train_loss:5.3213 train_time:4975ms step_avg:146.33ms
step:45/1750 train_loss:5.4671 train_time:5122ms step_avg:146.36ms
step:46/1750 train_loss:5.2637 train_time:5269ms step_avg:146.36ms
step:47/1750 train_loss:5.1617 train_time:5417ms step_avg:146.41ms
step:48/1750 train_loss:5.2806 train_time:5564ms step_avg:146.42ms
step:49/1750 train_loss:5.2290 train_time:5711ms step_avg:146.42ms
step:50/1750 train_loss:5.3534 train_time:5859ms step_avg:146.48ms
step:51/1750 train_loss:5.2376 train_time:6006ms step_avg:146.48ms
step:52/1750 train_loss:5.1136 train_time:6154ms step_avg:146.52ms
step:53/1750 train_loss:5.2500 train_time:6301ms step_avg:146.52ms
step:54/1750 train_loss:5.1074 train_time:6447ms step_avg:146.52ms
step:55/1750 train_loss:5.4920 train_time:6594ms step_avg:146.54ms
step:56/1750 train_loss:5.1318 train_time:6742ms step_avg:146.57ms
step:57/1750 train_loss:4.9750 train_time:6889ms step_avg:146.57ms
step:58/1750 train_loss:5.0893 train_time:7037ms step_avg:146.61ms
step:59/1750 train_loss:5.0847 train_time:7185ms step_avg:146.63ms
step:60/1750 train_loss:5.2131 train_time:7332ms step_avg:146.65ms
step:61/1750 train_loss:4.9507 train_time:7480ms step_avg:146.66ms
step:62/1750 train_loss:5.0609 train_time:7627ms step_avg:146.67ms
step:63/1750 train_loss:5.0448 train_time:7775ms step_avg:146.71ms
step:64/1750 train_loss:4.9298 train_time:7924ms step_avg:146.73ms
step:65/1750 train_loss:4.8900 train_time:8070ms step_avg:146.73ms
step:66/1750 train_loss:5.0596 train_time:8219ms step_avg:146.77ms
step:67/1750 train_loss:4.9403 train_time:8367ms step_avg:146.79ms
step:68/1750 train_loss:5.2433 train_time:8514ms step_avg:146.80ms
step:69/1750 train_loss:4.8122 train_time:8662ms step_avg:146.81ms
step:70/1750 train_loss:4.9353 train_time:8808ms step_avg:146.81ms
step:71/1750 train_loss:5.0737 train_time:8957ms step_avg:146.84ms
step:72/1750 train_loss:4.9935 train_time:9104ms step_avg:146.83ms
step:73/1750 train_loss:4.8437 train_time:9251ms step_avg:146.84ms
step:74/1750 train_loss:5.0014 train_time:9398ms step_avg:146.85ms
step:75/1750 train_loss:4.9576 train_time:9546ms step_avg:146.86ms
step:76/1750 train_loss:4.8840 train_time:9693ms step_avg:146.87ms
step:77/1750 train_loss:5.0027 train_time:9841ms step_avg:146.88ms
step:78/1750 train_loss:5.1963 train_time:9988ms step_avg:146.88ms
step:79/1750 train_loss:4.8986 train_time:10136ms step_avg:146.90ms
step:80/1750 train_loss:4.9474 train_time:10283ms step_avg:146.90ms
step:81/1750 train_loss:4.7491 train_time:10429ms step_avg:146.89ms
step:82/1750 train_loss:4.8971 train_time:10577ms step_avg:146.90ms
step:83/1750 train_loss:4.8451 train_time:10724ms step_avg:146.91ms
step:84/1750 train_loss:4.8604 train_time:10871ms step_avg:146.91ms
step:85/1750 train_loss:4.7199 train_time:11020ms step_avg:146.93ms
step:86/1750 train_loss:4.9357 train_time:11167ms step_avg:146.93ms
step:87/1750 train_loss:4.8148 train_time:11315ms step_avg:146.95ms
step:88/1750 train_loss:4.8341 train_time:11462ms step_avg:146.95ms
step:89/1750 train_loss:4.8021 train_time:11608ms step_avg:146.94ms
step:90/1750 train_loss:4.7301 train_time:11757ms step_avg:146.96ms
step:91/1750 train_loss:4.7091 train_time:11903ms step_avg:146.96ms
step:92/1750 train_loss:4.8536 train_time:12051ms step_avg:146.96ms
step:93/1750 train_loss:4.6666 train_time:12199ms step_avg:146.97ms
step:94/1750 train_loss:4.6935 train_time:12346ms step_avg:146.98ms
step:95/1750 train_loss:4.7336 train_time:12494ms step_avg:146.98ms
step:96/1750 train_loss:4.6578 train_time:12642ms step_avg:147.00ms
step:97/1750 train_loss:4.6947 train_time:12789ms step_avg:147.00ms
step:98/1750 train_loss:4.6431 train_time:12937ms step_avg:147.01ms
step:99/1750 train_loss:4.7432 train_time:13084ms step_avg:147.01ms
step:100/1750 train_loss:4.7288 train_time:13231ms step_avg:147.01ms
step:101/1750 train_loss:4.5786 train_time:13379ms step_avg:147.03ms
step:102/1750 train_loss:4.7507 train_time:13527ms step_avg:147.03ms
step:103/1750 train_loss:4.6192 train_time:13674ms step_avg:147.03ms
step:104/1750 train_loss:4.5831 train_time:13821ms step_avg:147.04ms
step:105/1750 train_loss:4.6001 train_time:13968ms step_avg:147.03ms
step:106/1750 train_loss:4.6512 train_time:14117ms step_avg:147.05ms
step:107/1750 train_loss:4.5581 train_time:14264ms step_avg:147.05ms
step:108/1750 train_loss:4.3875 train_time:14410ms step_avg:147.04ms
step:109/1750 train_loss:4.5229 train_time:14559ms step_avg:147.06ms
step:110/1750 train_loss:4.5067 train_time:14705ms step_avg:147.05ms
step:111/1750 train_loss:4.4567 train_time:14853ms step_avg:147.06ms
step:112/1750 train_loss:4.6268 train_time:15000ms step_avg:147.05ms
step:113/1750 train_loss:4.5246 train_time:15147ms step_avg:147.06ms
step:114/1750 train_loss:4.3935 train_time:15294ms step_avg:147.06ms
step:115/1750 train_loss:4.5388 train_time:15442ms step_avg:147.07ms
step:116/1750 train_loss:4.5041 train_time:15589ms step_avg:147.06ms
step:117/1750 train_loss:4.4267 train_time:15737ms step_avg:147.08ms
step:118/1750 train_loss:4.6428 train_time:15884ms step_avg:147.08ms
step:119/1750 train_loss:4.5073 train_time:16031ms step_avg:147.07ms
step:120/1750 train_loss:4.4162 train_time:16179ms step_avg:147.08ms
step:121/1750 train_loss:4.3540 train_time:16326ms step_avg:147.08ms
step:122/1750 train_loss:4.4850 train_time:16472ms step_avg:147.07ms
step:123/1750 train_loss:4.3359 train_time:16620ms step_avg:147.08ms
step:124/1750 train_loss:4.6332 train_time:16767ms step_avg:147.08ms
step:125/1750 train_loss:4.5138 train_time:16914ms step_avg:147.08ms
step:125/1750 val_loss:4.4507 train_time:16953ms step_avg:147.41ms
step:126/1750 train_loss:4.4644 train_time:17065ms step_avg:147.11ms
step:127/1750 train_loss:4.4881 train_time:17212ms step_avg:147.11ms
step:128/1750 train_loss:4.4251 train_time:17361ms step_avg:147.13ms
step:129/1750 train_loss:4.7386 train_time:17508ms step_avg:147.13ms
step:130/1750 train_loss:4.4233 train_time:17655ms step_avg:147.12ms
step:131/1750 train_loss:4.4400 train_time:17805ms step_avg:147.15ms
step:132/1750 train_loss:4.3813 train_time:17956ms step_avg:147.18ms
step:133/1750 train_loss:4.4800 train_time:18106ms step_avg:147.21ms
step:134/1750 train_loss:4.3044 train_time:18257ms step_avg:147.23ms
step:135/1750 train_loss:4.4815 train_time:18407ms step_avg:147.26ms
step:136/1750 train_loss:4.2433 train_time:18557ms step_avg:147.28ms
step:137/1750 train_loss:4.4004 train_time:18708ms step_avg:147.31ms
step:138/1750 train_loss:4.3156 train_time:18858ms step_avg:147.33ms
step:139/1750 train_loss:4.3997 train_time:19008ms step_avg:147.35ms
step:140/1750 train_loss:4.4837 train_time:19159ms step_avg:147.37ms
step:141/1750 train_loss:4.3306 train_time:19309ms step_avg:147.40ms
step:142/1750 train_loss:4.3378 train_time:19460ms step_avg:147.43ms
step:143/1750 train_loss:4.2807 train_time:19611ms step_avg:147.45ms
step:144/1750 train_loss:4.3778 train_time:19762ms step_avg:147.48ms
step:145/1750 train_loss:4.3263 train_time:19913ms step_avg:147.50ms
step:146/1750 train_loss:4.1943 train_time:20065ms step_avg:147.53ms
step:147/1750 train_loss:4.3476 train_time:20215ms step_avg:147.55ms
step:148/1750 train_loss:4.3867 train_time:20366ms step_avg:147.58ms
step:149/1750 train_loss:4.3244 train_time:20516ms step_avg:147.60ms
step:150/1750 train_loss:4.4586 train_time:20667ms step_avg:147.62ms
step:151/1750 train_loss:4.2908 train_time:20816ms step_avg:147.63ms
step:152/1750 train_loss:4.2967 train_time:20968ms step_avg:147.66ms
step:153/1750 train_loss:4.3887 train_time:21118ms step_avg:147.68ms
step:154/1750 train_loss:4.3787 train_time:21269ms step_avg:147.70ms
step:155/1750 train_loss:4.3055 train_time:21418ms step_avg:147.71ms
step:156/1750 train_loss:4.3808 train_time:21569ms step_avg:147.74ms
step:157/1750 train_loss:4.4349 train_time:21719ms step_avg:147.75ms
step:158/1750 train_loss:4.2651 train_time:21870ms step_avg:147.77ms
step:159/1750 train_loss:4.3347 train_time:22019ms step_avg:147.78ms
step:160/1750 train_loss:4.1479 train_time:22170ms step_avg:147.80ms
step:161/1750 train_loss:4.3648 train_time:22319ms step_avg:147.81ms
step:162/1750 train_loss:4.3835 train_time:22470ms step_avg:147.83ms
step:163/1750 train_loss:4.3663 train_time:22620ms step_avg:147.84ms
step:164/1750 train_loss:4.2088 train_time:22771ms step_avg:147.87ms
step:165/1750 train_loss:4.3004 train_time:22922ms step_avg:147.88ms
step:166/1750 train_loss:4.3666 train_time:23073ms step_avg:147.90ms
step:167/1750 train_loss:4.2215 train_time:23224ms step_avg:147.92ms
step:168/1750 train_loss:4.3022 train_time:23374ms step_avg:147.94ms
step:169/1750 train_loss:4.1673 train_time:23525ms step_avg:147.96ms
step:170/1750 train_loss:4.0411 train_time:23676ms step_avg:147.97ms
step:171/1750 train_loss:4.2174 train_time:23826ms step_avg:147.99ms
step:172/1750 train_loss:4.2258 train_time:23976ms step_avg:148.00ms
step:173/1750 train_loss:4.2819 train_time:24126ms step_avg:148.02ms
step:174/1750 train_loss:4.4530 train_time:24276ms step_avg:148.03ms
step:175/1750 train_loss:4.2824 train_time:24426ms step_avg:148.04ms
step:176/1750 train_loss:4.1088 train_time:24577ms step_avg:148.05ms
step:177/1750 train_loss:4.0896 train_time:24727ms step_avg:148.06ms
step:178/1750 train_loss:4.2171 train_time:24877ms step_avg:148.08ms
step:179/1750 train_loss:4.1554 train_time:25028ms step_avg:148.09ms
step:180/1750 train_loss:4.1382 train_time:25178ms step_avg:148.10ms
step:181/1750 train_loss:4.3258 train_time:25328ms step_avg:148.11ms
step:182/1750 train_loss:4.1919 train_time:25478ms step_avg:148.13ms
step:183/1750 train_loss:4.1468 train_time:25628ms step_avg:148.14ms
step:184/1750 train_loss:4.1486 train_time:25778ms step_avg:148.15ms
step:185/1750 train_loss:4.2305 train_time:25929ms step_avg:148.17ms
step:186/1750 train_loss:4.1965 train_time:26080ms step_avg:148.18ms
step:187/1750 train_loss:4.2586 train_time:26230ms step_avg:148.19ms
step:188/1750 train_loss:4.2004 train_time:26498ms step_avg:148.86ms
step:189/1750 train_loss:4.1594 train_time:26787ms step_avg:149.65ms
step:190/1750 train_loss:4.2467 train_time:26935ms step_avg:149.64ms
step:191/1750 train_loss:4.1130 train_time:27088ms step_avg:149.66ms
step:192/1750 train_loss:4.0537 train_time:27238ms step_avg:149.66ms
step:193/1750 train_loss:4.2861 train_time:27389ms step_avg:149.67ms
step:194/1750 train_loss:4.2126 train_time:27539ms step_avg:149.67ms
step:195/1750 train_loss:4.3910 train_time:27689ms step_avg:149.67ms
step:196/1750 train_loss:4.2034 train_time:27837ms step_avg:149.66ms
step:197/1750 train_loss:4.0668 train_time:27988ms step_avg:149.67ms
step:198/1750 train_loss:4.1939 train_time:28138ms step_avg:149.67ms
step:199/1750 train_loss:4.0465 train_time:28287ms step_avg:149.67ms
step:200/1750 train_loss:4.1395 train_time:28436ms step_avg:149.66ms
step:201/1750 train_loss:4.0131 train_time:28587ms step_avg:149.67ms
step:202/1750 train_loss:4.2632 train_time:28735ms step_avg:149.66ms
step:203/1750 train_loss:4.0881 train_time:28886ms step_avg:149.67ms
step:204/1750 train_loss:4.2088 train_time:29034ms step_avg:149.66ms
step:205/1750 train_loss:4.2534 train_time:29185ms step_avg:149.67ms
step:206/1750 train_loss:3.9534 train_time:29335ms step_avg:149.67ms
step:207/1750 train_loss:4.1011 train_time:29485ms step_avg:149.67ms
step:208/1750 train_loss:4.1121 train_time:29634ms step_avg:149.67ms
step:209/1750 train_loss:4.2551 train_time:29785ms step_avg:149.67ms
step:210/1750 train_loss:4.2014 train_time:29934ms step_avg:149.67ms
step:211/1750 train_loss:4.0724 train_time:30085ms step_avg:149.68ms
step:212/1750 train_loss:4.1425 train_time:30233ms step_avg:149.67ms
step:213/1750 train_loss:4.0658 train_time:30384ms step_avg:149.67ms
step:214/1750 train_loss:4.1253 train_time:30532ms step_avg:149.67ms
step:215/1750 train_loss:3.9665 train_time:30682ms step_avg:149.67ms
step:216/1750 train_loss:4.0293 train_time:30831ms step_avg:149.66ms
step:217/1750 train_loss:4.0257 train_time:30981ms step_avg:149.67ms
step:218/1750 train_loss:4.0992 train_time:31129ms step_avg:149.66ms
step:219/1750 train_loss:4.0863 train_time:31279ms step_avg:149.66ms
step:220/1750 train_loss:4.0971 train_time:31428ms step_avg:149.66ms
step:221/1750 train_loss:4.1065 train_time:31577ms step_avg:149.65ms
step:222/1750 train_loss:4.0103 train_time:31727ms step_avg:149.65ms
step:223/1750 train_loss:4.0136 train_time:31877ms step_avg:149.66ms
step:224/1750 train_loss:4.3169 train_time:32026ms step_avg:149.66ms
step:225/1750 train_loss:3.9171 train_time:32175ms step_avg:149.65ms
step:226/1750 train_loss:4.0016 train_time:32325ms step_avg:149.65ms
step:227/1750 train_loss:4.0015 train_time:32474ms step_avg:149.65ms
step:228/1750 train_loss:4.1646 train_time:32624ms step_avg:149.65ms
step:229/1750 train_loss:3.9555 train_time:32773ms step_avg:149.65ms
step:230/1750 train_loss:4.0622 train_time:32923ms step_avg:149.65ms
step:231/1750 train_loss:3.9216 train_time:33072ms step_avg:149.65ms
step:232/1750 train_loss:3.9859 train_time:33222ms step_avg:149.65ms
step:233/1750 train_loss:4.1094 train_time:33372ms step_avg:149.65ms
step:234/1750 train_loss:4.0518 train_time:33521ms step_avg:149.65ms
step:235/1750 train_loss:3.9276 train_time:33670ms step_avg:149.65ms
step:236/1750 train_loss:4.1127 train_time:33820ms step_avg:149.65ms
step:237/1750 train_loss:4.1071 train_time:33969ms step_avg:149.65ms
step:238/1750 train_loss:3.9597 train_time:34118ms step_avg:149.64ms
step:239/1750 train_loss:4.1019 train_time:34268ms step_avg:149.64ms
step:240/1750 train_loss:4.1376 train_time:34416ms step_avg:149.63ms
step:241/1750 train_loss:3.9991 train_time:34567ms step_avg:149.64ms
step:242/1750 train_loss:4.1676 train_time:34716ms step_avg:149.64ms
step:243/1750 train_loss:4.0457 train_time:34867ms step_avg:149.64ms
step:244/1750 train_loss:4.0946 train_time:35016ms step_avg:149.64ms
step:245/1750 train_loss:4.1717 train_time:35166ms step_avg:149.64ms
step:246/1750 train_loss:4.0879 train_time:35314ms step_avg:149.64ms
step:247/1750 train_loss:4.0292 train_time:35465ms step_avg:149.64ms
step:248/1750 train_loss:4.1398 train_time:35614ms step_avg:149.64ms
step:249/1750 train_loss:3.9439 train_time:35765ms step_avg:149.65ms
step:250/1750 train_loss:3.9950 train_time:35914ms step_avg:149.64ms
step:250/1750 val_loss:4.0355 train_time:35954ms step_avg:149.81ms
step:251/1750 train_loss:4.1055 train_time:36068ms step_avg:149.66ms
step:252/1750 train_loss:4.1859 train_time:36219ms step_avg:149.66ms
step:253/1750 train_loss:3.9581 train_time:36370ms step_avg:149.67ms
step:254/1750 train_loss:3.8976 train_time:36519ms step_avg:149.67ms
step:255/1750 train_loss:4.0989 train_time:36670ms step_avg:149.67ms
step:256/1750 train_loss:4.0101 train_time:36819ms step_avg:149.67ms
step:257/1750 train_loss:4.0108 train_time:36968ms step_avg:149.67ms
step:258/1750 train_loss:4.0120 train_time:37118ms step_avg:149.67ms
step:259/1750 train_loss:4.0626 train_time:37268ms step_avg:149.67ms
step:260/1750 train_loss:4.0938 train_time:37416ms step_avg:149.66ms
step:261/1750 train_loss:4.0408 train_time:37569ms step_avg:149.68ms
step:262/1750 train_loss:4.0166 train_time:37722ms step_avg:149.69ms
step:263/1750 train_loss:3.9120 train_time:37875ms step_avg:149.70ms
step:264/1750 train_loss:4.0106 train_time:38028ms step_avg:149.72ms
step:265/1750 train_loss:3.8899 train_time:38182ms step_avg:149.73ms
step:266/1750 train_loss:3.9409 train_time:38333ms step_avg:149.74ms
step:267/1750 train_loss:3.9416 train_time:38488ms step_avg:149.76ms
step:268/1750 train_loss:3.9738 train_time:38640ms step_avg:149.77ms
step:269/1750 train_loss:3.8844 train_time:38793ms step_avg:149.78ms
step:270/1750 train_loss:4.1297 train_time:38946ms step_avg:149.79ms
step:271/1750 train_loss:3.9857 train_time:39098ms step_avg:149.80ms
step:272/1750 train_loss:3.9345 train_time:39250ms step_avg:149.81ms
step:273/1750 train_loss:3.9625 train_time:39403ms step_avg:149.82ms
step:274/1750 train_loss:4.0496 train_time:39555ms step_avg:149.83ms
step:275/1750 train_loss:4.0761 train_time:39709ms step_avg:149.84ms
step:276/1750 train_loss:4.2472 train_time:39862ms step_avg:149.86ms
step:277/1750 train_loss:4.0559 train_time:40014ms step_avg:149.86ms
step:278/1750 train_loss:4.1059 train_time:40167ms step_avg:149.88ms
step:279/1750 train_loss:4.0092 train_time:40318ms step_avg:149.88ms
step:280/1750 train_loss:4.1939 train_time:40472ms step_avg:149.90ms
step:281/1750 train_loss:3.9941 train_time:40625ms step_avg:149.91ms
step:282/1750 train_loss:3.9595 train_time:40778ms step_avg:149.92ms
step:283/1750 train_loss:3.9266 train_time:40929ms step_avg:149.92ms
step:284/1750 train_loss:4.0678 train_time:41083ms step_avg:149.94ms
step:285/1750 train_loss:4.0828 train_time:41237ms step_avg:149.95ms
step:286/1750 train_loss:4.1145 train_time:41390ms step_avg:149.97ms
step:287/1750 train_loss:3.9309 train_time:41544ms step_avg:149.98ms
step:288/1750 train_loss:4.0378 train_time:41696ms step_avg:149.98ms
step:289/1750 train_loss:3.8987 train_time:41849ms step_avg:149.99ms
step:290/1750 train_loss:3.8786 train_time:42002ms step_avg:150.01ms
step:291/1750 train_loss:3.9370 train_time:42155ms step_avg:150.02ms
step:292/1750 train_loss:3.8850 train_time:42308ms step_avg:150.03ms
step:293/1750 train_loss:3.9300 train_time:42460ms step_avg:150.03ms
step:294/1750 train_loss:3.9585 train_time:42612ms step_avg:150.04ms
step:295/1750 train_loss:3.8593 train_time:42765ms step_avg:150.05ms
step:296/1750 train_loss:3.8881 train_time:42918ms step_avg:150.06ms
step:297/1750 train_loss:3.8986 train_time:43070ms step_avg:150.07ms
step:298/1750 train_loss:3.9986 train_time:43223ms step_avg:150.08ms
step:299/1750 train_loss:3.8432 train_time:43375ms step_avg:150.09ms
step:300/1750 train_loss:3.9925 train_time:43529ms step_avg:150.10ms
step:301/1750 train_loss:4.0030 train_time:43681ms step_avg:150.11ms
step:302/1750 train_loss:3.9604 train_time:43834ms step_avg:150.12ms
step:303/1750 train_loss:4.0005 train_time:43988ms step_avg:150.13ms
step:304/1750 train_loss:3.9916 train_time:44139ms step_avg:150.13ms
step:305/1750 train_loss:4.4823 train_time:44292ms step_avg:150.14ms
step:306/1750 train_loss:3.9576 train_time:44444ms step_avg:150.15ms
step:307/1750 train_loss:3.8585 train_time:44597ms step_avg:150.16ms
step:308/1750 train_loss:4.0127 train_time:44749ms step_avg:150.17ms
step:309/1750 train_loss:3.8867 train_time:44903ms step_avg:150.18ms
step:310/1750 train_loss:4.1041 train_time:45054ms step_avg:150.18ms
step:311/1750 train_loss:3.9494 train_time:45208ms step_avg:150.19ms
step:312/1750 train_loss:3.8851 train_time:45361ms step_avg:150.20ms
step:313/1750 train_loss:3.9726 train_time:45514ms step_avg:150.21ms
step:314/1750 train_loss:4.0888 train_time:45667ms step_avg:150.22ms
step:315/1750 train_loss:3.9700 train_time:45819ms step_avg:150.22ms
step:316/1750 train_loss:3.8169 train_time:45971ms step_avg:150.23ms
step:317/1750 train_loss:3.8987 train_time:46124ms step_avg:150.24ms
step:318/1750 train_loss:3.9488 train_time:46276ms step_avg:150.25ms
step:319/1750 train_loss:3.9085 train_time:46430ms step_avg:150.26ms
step:320/1750 train_loss:4.0333 train_time:46585ms step_avg:150.27ms
step:321/1750 train_loss:3.9807 train_time:46737ms step_avg:150.28ms
step:322/1750 train_loss:3.9558 train_time:46890ms step_avg:150.29ms
step:323/1750 train_loss:4.0369 train_time:47042ms step_avg:150.29ms
step:324/1750 train_loss:3.9728 train_time:47195ms step_avg:150.30ms
step:325/1750 train_loss:4.0418 train_time:47347ms step_avg:150.31ms
step:326/1750 train_loss:3.9135 train_time:47499ms step_avg:150.31ms
step:327/1750 train_loss:4.4162 train_time:47650ms step_avg:150.32ms
step:328/1750 train_loss:4.0950 train_time:47803ms step_avg:150.32ms
step:329/1750 train_loss:3.8207 train_time:47955ms step_avg:150.33ms
step:330/1750 train_loss:3.7715 train_time:48108ms step_avg:150.34ms
step:331/1750 train_loss:4.0001 train_time:48260ms step_avg:150.34ms
step:332/1750 train_loss:3.9230 train_time:48412ms step_avg:150.35ms
step:333/1750 train_loss:3.9008 train_time:48565ms step_avg:150.35ms
step:334/1750 train_loss:3.8609 train_time:48714ms step_avg:150.35ms
step:335/1750 train_loss:4.0277 train_time:48867ms step_avg:150.36ms
step:336/1750 train_loss:3.9841 train_time:49018ms step_avg:150.36ms
step:337/1750 train_loss:4.4431 train_time:49171ms step_avg:150.37ms
step:338/1750 train_loss:3.9586 train_time:49323ms step_avg:150.37ms
step:339/1750 train_loss:3.8836 train_time:49474ms step_avg:150.38ms
step:340/1750 train_loss:3.9543 train_time:49628ms step_avg:150.39ms
step:341/1750 train_loss:3.8759 train_time:49780ms step_avg:150.39ms
step:342/1750 train_loss:3.8353 train_time:49931ms step_avg:150.39ms
step:343/1750 train_loss:3.8698 train_time:50084ms step_avg:150.40ms
step:344/1750 train_loss:4.0117 train_time:50235ms step_avg:150.41ms
step:345/1750 train_loss:3.8353 train_time:50389ms step_avg:150.42ms
step:346/1750 train_loss:3.7886 train_time:50540ms step_avg:150.42ms
step:347/1750 train_loss:3.8239 train_time:50692ms step_avg:150.42ms
step:348/1750 train_loss:3.8781 train_time:50844ms step_avg:150.43ms
step:349/1750 train_loss:3.8504 train_time:50996ms step_avg:150.43ms
step:350/1750 train_loss:3.5906 train_time:51147ms step_avg:150.43ms
step:351/1750 train_loss:3.8537 train_time:51300ms step_avg:150.44ms
step:352/1750 train_loss:4.2139 train_time:51450ms step_avg:150.44ms
step:353/1750 train_loss:3.6782 train_time:51603ms step_avg:150.45ms
step:354/1750 train_loss:3.9453 train_time:51754ms step_avg:150.45ms
step:355/1750 train_loss:3.8095 train_time:51907ms step_avg:150.46ms
step:356/1750 train_loss:3.9071 train_time:52059ms step_avg:150.46ms