forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathba299b7e-a36a-4fd8-a268-25bb772010dd.txt
2406 lines (2335 loc) · 151 KB
/
ba299b7e-a36a-4fd8-a268-25bb772010dd.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
====================================================================================================
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
if group['nesterov']:
g = g.add(buf, alpha=momentum)
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.dim = dim
self.base = base
self.inv_freq = None
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim))
self.seq_len_cached = seq_len
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
self.cos_cached = freqs.cos().bfloat16()
self.sin_cached = freqs.sin().bfloat16()
return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
def apply_rotary_emb(x, cos, sin):
assert x.ndim == 4 # multihead attention
d = x.shape[3]//2
x1 = x[..., :d]
x2 = x[..., d:]
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat([y1, y2], 3).type_as(x)
class CastedLinear(nn.Linear):
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.n_head = config.n_head
self.n_embd = config.n_embd
self.head_dim = self.n_embd // self.n_head
assert self.n_embd % self.n_head == 0
self.c_q = CastedLinear(self.n_embd, self.n_embd, bias=False)
self.c_k = CastedLinear(self.n_embd, self.n_embd, bias=False)
self.c_v = CastedLinear(self.n_embd, self.n_embd, bias=False)
# output projection
self.c_proj = CastedLinear(self.n_embd, self.n_embd, bias=False)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
self.rotary = Rotary(self.head_dim)
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
def forward(self, x, v1, block_mask):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
k = self.c_k(x).view(B, T, self.n_head, self.head_dim)
v = self.c_v(x).view(B, T, self.n_head, self.head_dim)
if v1 is None:
v1 = v # This happens if we are in the first block. v needs to be accessed by subsequent blocks
v = (1 - self.lamb) * v + self.lamb * v1.view_as(v) # @Grad62304977
cos, sin = self.rotary(q)
q, k = F.rms_norm(q, (q.size(-1),)), F.rms_norm(k, (k.size(-1),)) # QK norm suggested by @Grad62304977
q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y, v1
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = CastedLinear(config.n_embd, 4 * config.n_embd, bias=False)
self.c_proj = CastedLinear(4 * config.n_embd, config.n_embd, bias=False)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config)
self.mlp = MLP(config)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, v1, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x1, v1 = self.attn(F.rms_norm(x, (x.size(-1),)), v1, block_mask)
x = x + x1
x = x + self.mlp(F.rms_norm(x, (x.size(-1),)))
return x, v1
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size, bias=False)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = F.rms_norm(x, (x.size(-1),)) # @Grad62304977
x0 = x
v1 = None
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x, v1 = self.transformer.h[i](x, v1, x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x, v1 = self.transformer.h[self.num_encoder_layers + i](x, v1, x0, block_mask)
x = F.rms_norm(x, (x.size(-1),))
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, B, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.B = B
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * B * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.B * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.B * self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.B*self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
device_batch_size : int = 1 # batch size, in sequences, per device
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1750 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 640 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write('='*100 + '\n')
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
B, T = args.device_batch_size, args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (B * T * ddp_world_size) == 0
val_steps = args.val_tokens // (B * T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (B * ddp_world_size) == 0
train_accumulation_steps = args.batch_size // (B * ddp_world_size)
# load tokens
train_loader = DistributedDataLoader(args.input_bin, B, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, B, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# CUDNN attention is ~4ms faster than Flash, but doesn't get selected by default in PyTorch 2.5.1
from torch.backends.cuda import enable_cudnn_sdp, enable_flash_sdp, enable_math_sdp, enable_mem_efficient_sdp
enable_cudnn_sdp(True)
enable_flash_sdp(False)
enable_mem_efficient_sdp(False)
enable_math_sdp(False)
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# Set the attention blocksize for the current step, in chunks of 64
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
train_loss = loss.detach()
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
if i < train_accumulation_steps:
with model.no_sync(): # there's no need to sync gradients every accumulation step
loss.backward()
else:
loss.backward() # just sync on the last step
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241124+cu124 compiled for CUDA 12.4
nvidia-smi:
Mon Nov 25 00:04:42 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 555.42.06 Driver Version: 555.42.06 CUDA Version: 12.5 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA H100 80GB HBM3 Off | 00000000:18:00.0 Off | 0 |
| N/A 32C P0 69W / 700W | 4MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 Off | 00000000:2A:00.0 Off | 0 |
| N/A 37C P0 116W / 700W | 23MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 Off | 00000000:3A:00.0 Off | 0 |
| N/A 39C P0 113W / 700W | 530MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 Off | 00000000:5D:00.0 Off | 0 |
| N/A 32C P0 114W / 700W | 44MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 Off | 00000000:84:00.0 Off | 0 |
| N/A 32C P0 112W / 700W | 530MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 Off | 00000000:8B:00.0 Off | 0 |
| N/A 38C P0 117W / 700W | 42MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 Off | 00000000:91:00.0 Off | 0 |
| N/A 35C P0 109W / 700W | 23MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 Off | 00000000:E4:00.0 Off | 0 |
| N/A 32C P0 116W / 700W | 530MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 1 N/A N/A 32988 C /usr/bin/python3 0MiB |
| 2 N/A N/A 32989 C /usr/bin/python3 0MiB |
| 3 N/A N/A 32990 C /usr/bin/python3 0MiB |
| 4 N/A N/A 32991 C /usr/bin/python3 0MiB |
| 5 N/A N/A 32992 C /usr/bin/python3 0MiB |
| 6 N/A N/A 32993 C /usr/bin/python3 0MiB |
| 7 N/A N/A 32994 C /usr/bin/python3 0MiB |
+-----------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1800000000 across 18 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1750 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1750 train_loss:10.8258 train_time:25695ms step_avg:nanms
step:2/1750 train_loss:10.0780 train_time:25805ms step_avg:nanms
step:3/1750 train_loss:8.3807 train_time:25950ms step_avg:nanms
step:4/1750 train_loss:7.5740 train_time:26098ms step_avg:nanms
step:5/1750 train_loss:7.4820 train_time:26244ms step_avg:nanms
step:6/1750 train_loss:6.9623 train_time:26391ms step_avg:nanms
step:7/1750 train_loss:7.2179 train_time:26541ms step_avg:nanms
step:8/1750 train_loss:6.7401 train_time:26687ms step_avg:nanms
step:9/1750 train_loss:6.6296 train_time:26833ms step_avg:nanms
step:10/1750 train_loss:6.5109 train_time:26982ms step_avg:nanms
step:11/1750 train_loss:6.4241 train_time:109ms step_avg:nanms
step:12/1750 train_loss:6.3336 train_time:257ms step_avg:nanms
step:13/1750 train_loss:6.3133 train_time:404ms step_avg:134.76ms
step:14/1750 train_loss:6.2517 train_time:551ms step_avg:137.70ms
step:15/1750 train_loss:6.2284 train_time:700ms step_avg:140.00ms
step:16/1750 train_loss:6.1829 train_time:847ms step_avg:141.23ms
step:17/1750 train_loss:6.2496 train_time:995ms step_avg:142.17ms
step:18/1750 train_loss:6.0229 train_time:1143ms step_avg:142.91ms
step:19/1750 train_loss:6.0581 train_time:1291ms step_avg:143.40ms
step:20/1750 train_loss:5.7427 train_time:1439ms step_avg:143.91ms
step:21/1750 train_loss:6.0471 train_time:1588ms step_avg:144.37ms
step:22/1750 train_loss:6.2579 train_time:1735ms step_avg:144.60ms
step:23/1750 train_loss:5.9635 train_time:1883ms step_avg:144.86ms
step:24/1750 train_loss:6.1333 train_time:2029ms step_avg:144.96ms
step:25/1750 train_loss:5.7741 train_time:2178ms step_avg:145.20ms
step:26/1750 train_loss:5.6894 train_time:2327ms step_avg:145.42ms
step:27/1750 train_loss:5.9393 train_time:2473ms step_avg:145.48ms
step:28/1750 train_loss:5.5191 train_time:2622ms step_avg:145.64ms
step:29/1750 train_loss:5.7794 train_time:2768ms step_avg:145.67ms
step:30/1750 train_loss:5.5926 train_time:2916ms step_avg:145.80ms
step:31/1750 train_loss:5.5676 train_time:3063ms step_avg:145.88ms
step:32/1750 train_loss:5.4175 train_time:3210ms step_avg:145.93ms
step:33/1750 train_loss:5.7134 train_time:3358ms step_avg:146.02ms
step:34/1750 train_loss:5.6071 train_time:3507ms step_avg:146.11ms
step:35/1750 train_loss:5.7550 train_time:3653ms step_avg:146.11ms
step:36/1750 train_loss:5.6555 train_time:3802ms step_avg:146.23ms
step:37/1750 train_loss:5.5608 train_time:3948ms step_avg:146.22ms
step:38/1750 train_loss:5.4291 train_time:4096ms step_avg:146.27ms
step:39/1750 train_loss:5.4267 train_time:4243ms step_avg:146.31ms
step:40/1750 train_loss:5.3427 train_time:4390ms step_avg:146.35ms
step:41/1750 train_loss:5.3431 train_time:4538ms step_avg:146.40ms
step:42/1750 train_loss:5.2800 train_time:4686ms step_avg:146.43ms
step:43/1750 train_loss:5.3616 train_time:4833ms step_avg:146.44ms
step:44/1750 train_loss:5.3401 train_time:4981ms step_avg:146.51ms
step:45/1750 train_loss:5.4859 train_time:5128ms step_avg:146.52ms
step:46/1750 train_loss:5.2753 train_time:5276ms step_avg:146.54ms
step:47/1750 train_loss:5.1751 train_time:5423ms step_avg:146.58ms
step:48/1750 train_loss:5.3175 train_time:5570ms step_avg:146.57ms
step:49/1750 train_loss:5.2512 train_time:5718ms step_avg:146.62ms
step:50/1750 train_loss:5.3564 train_time:5865ms step_avg:146.62ms
step:51/1750 train_loss:5.2411 train_time:6012ms step_avg:146.64ms
step:52/1750 train_loss:5.1142 train_time:6160ms step_avg:146.67ms
step:53/1750 train_loss:5.2588 train_time:6307ms step_avg:146.68ms
step:54/1750 train_loss:5.0961 train_time:6454ms step_avg:146.69ms
step:55/1750 train_loss:5.4971 train_time:6603ms step_avg:146.72ms
step:56/1750 train_loss:5.1019 train_time:6749ms step_avg:146.71ms
step:57/1750 train_loss:4.9705 train_time:6897ms step_avg:146.75ms
step:58/1750 train_loss:5.0920 train_time:7044ms step_avg:146.76ms
step:59/1750 train_loss:5.1069 train_time:7191ms step_avg:146.75ms
step:60/1750 train_loss:5.2361 train_time:7339ms step_avg:146.78ms
step:61/1750 train_loss:4.9583 train_time:7487ms step_avg:146.80ms
step:62/1750 train_loss:5.0664 train_time:7633ms step_avg:146.79ms
step:63/1750 train_loss:5.0454 train_time:7781ms step_avg:146.81ms
step:64/1750 train_loss:4.9440 train_time:7928ms step_avg:146.82ms
step:65/1750 train_loss:4.9050 train_time:8075ms step_avg:146.82ms
step:66/1750 train_loss:5.0570 train_time:8224ms step_avg:146.87ms
step:67/1750 train_loss:4.9383 train_time:8370ms step_avg:146.85ms
step:68/1750 train_loss:5.1986 train_time:8519ms step_avg:146.88ms
step:69/1750 train_loss:4.8148 train_time:8665ms step_avg:146.87ms
step:70/1750 train_loss:4.9321 train_time:8813ms step_avg:146.88ms
step:71/1750 train_loss:5.0730 train_time:8960ms step_avg:146.89ms
step:72/1750 train_loss:4.9686 train_time:9108ms step_avg:146.90ms
step:73/1750 train_loss:4.8311 train_time:9255ms step_avg:146.90ms
step:74/1750 train_loss:4.9930 train_time:9403ms step_avg:146.92ms
step:75/1750 train_loss:4.9804 train_time:9550ms step_avg:146.92ms
step:76/1750 train_loss:4.8912 train_time:9697ms step_avg:146.93ms
step:77/1750 train_loss:5.0111 train_time:9845ms step_avg:146.94ms
step:78/1750 train_loss:5.1832 train_time:9991ms step_avg:146.93ms
step:79/1750 train_loss:4.9301 train_time:10139ms step_avg:146.95ms
step:80/1750 train_loss:4.9541 train_time:10288ms step_avg:146.97ms
step:81/1750 train_loss:4.7291 train_time:10435ms step_avg:146.97ms
step:82/1750 train_loss:4.8859 train_time:10583ms step_avg:146.99ms
step:83/1750 train_loss:4.8553 train_time:10730ms step_avg:146.99ms
step:84/1750 train_loss:4.8446 train_time:10878ms step_avg:147.00ms
step:85/1750 train_loss:4.7034 train_time:11025ms step_avg:147.00ms
step:86/1750 train_loss:4.9182 train_time:11172ms step_avg:147.00ms
step:87/1750 train_loss:4.8177 train_time:11320ms step_avg:147.01ms
step:88/1750 train_loss:4.8126 train_time:11466ms step_avg:147.00ms
step:89/1750 train_loss:4.7840 train_time:11614ms step_avg:147.01ms
step:90/1750 train_loss:4.7166 train_time:11762ms step_avg:147.02ms
step:91/1750 train_loss:4.6916 train_time:11908ms step_avg:147.02ms
step:92/1750 train_loss:4.8620 train_time:12055ms step_avg:147.02ms
step:93/1750 train_loss:4.6765 train_time:12203ms step_avg:147.03ms
step:94/1750 train_loss:4.6959 train_time:12350ms step_avg:147.02ms
step:95/1750 train_loss:4.7407 train_time:12498ms step_avg:147.04ms
step:96/1750 train_loss:4.6345 train_time:12645ms step_avg:147.04ms
step:97/1750 train_loss:4.6839 train_time:12792ms step_avg:147.03ms
step:98/1750 train_loss:4.6181 train_time:12940ms step_avg:147.05ms
step:99/1750 train_loss:4.7254 train_time:13088ms step_avg:147.05ms
step:100/1750 train_loss:4.7273 train_time:13234ms step_avg:147.05ms
step:101/1750 train_loss:4.5945 train_time:13382ms step_avg:147.06ms
step:102/1750 train_loss:4.7547 train_time:13529ms step_avg:147.06ms
step:103/1750 train_loss:4.6335 train_time:13676ms step_avg:147.05ms
step:104/1750 train_loss:4.5675 train_time:13825ms step_avg:147.07ms
step:105/1750 train_loss:4.5871 train_time:13972ms step_avg:147.08ms
step:106/1750 train_loss:4.6472 train_time:14120ms step_avg:147.08ms
step:107/1750 train_loss:4.5531 train_time:14267ms step_avg:147.08ms
step:108/1750 train_loss:4.3880 train_time:14415ms step_avg:147.09ms
step:109/1750 train_loss:4.5247 train_time:14562ms step_avg:147.09ms
step:110/1750 train_loss:4.5218 train_time:14708ms step_avg:147.08ms
step:111/1750 train_loss:4.4680 train_time:14855ms step_avg:147.08ms
step:112/1750 train_loss:4.6377 train_time:15003ms step_avg:147.09ms
step:113/1750 train_loss:4.5291 train_time:15150ms step_avg:147.09ms
step:114/1750 train_loss:4.3991 train_time:15298ms step_avg:147.10ms
step:115/1750 train_loss:4.5424 train_time:15445ms step_avg:147.09ms
step:116/1750 train_loss:4.5120 train_time:15591ms step_avg:147.09ms
step:117/1750 train_loss:4.4303 train_time:15738ms step_avg:147.08ms
step:118/1750 train_loss:4.6336 train_time:15886ms step_avg:147.09ms
step:119/1750 train_loss:4.5037 train_time:16031ms step_avg:147.08ms
step:120/1750 train_loss:4.3948 train_time:16180ms step_avg:147.09ms
step:121/1750 train_loss:4.3501 train_time:16327ms step_avg:147.09ms
step:122/1750 train_loss:4.4997 train_time:16474ms step_avg:147.09ms
step:123/1750 train_loss:4.3296 train_time:16621ms step_avg:147.09ms
step:124/1750 train_loss:4.6328 train_time:16768ms step_avg:147.08ms
step:125/1750 train_loss:4.5113 train_time:16916ms step_avg:147.10ms
step:125/1750 val_loss:4.4529 train_time:16954ms step_avg:147.42ms
step:126/1750 train_loss:4.4676 train_time:17064ms step_avg:147.10ms
step:127/1750 train_loss:4.4933 train_time:17213ms step_avg:147.12ms
step:128/1750 train_loss:4.4231 train_time:17361ms step_avg:147.13ms
step:129/1750 train_loss:4.7170 train_time:17508ms step_avg:147.13ms
step:130/1750 train_loss:4.4160 train_time:17656ms step_avg:147.14ms
step:131/1750 train_loss:4.4410 train_time:17804ms step_avg:147.14ms
step:132/1750 train_loss:4.3840 train_time:17957ms step_avg:147.19ms
step:133/1750 train_loss:4.4972 train_time:18106ms step_avg:147.20ms
step:134/1750 train_loss:4.2869 train_time:18257ms step_avg:147.24ms
step:135/1750 train_loss:4.4723 train_time:18407ms step_avg:147.26ms
step:136/1750 train_loss:4.2500 train_time:18559ms step_avg:147.29ms
step:137/1750 train_loss:4.3948 train_time:18709ms step_avg:147.31ms
step:138/1750 train_loss:4.3163 train_time:18860ms step_avg:147.34ms
step:139/1750 train_loss:4.4152 train_time:19009ms step_avg:147.36ms
step:140/1750 train_loss:4.4917 train_time:19160ms step_avg:147.39ms
step:141/1750 train_loss:4.3289 train_time:19310ms step_avg:147.40ms
step:142/1750 train_loss:4.3195 train_time:19461ms step_avg:147.43ms
step:143/1750 train_loss:4.2748 train_time:19611ms step_avg:147.45ms
step:144/1750 train_loss:4.3697 train_time:19761ms step_avg:147.47ms
step:145/1750 train_loss:4.3252 train_time:19912ms step_avg:147.49ms
step:146/1750 train_loss:4.1812 train_time:20063ms step_avg:147.52ms
step:147/1750 train_loss:4.3411 train_time:20213ms step_avg:147.54ms
step:148/1750 train_loss:4.3783 train_time:20364ms step_avg:147.56ms
step:149/1750 train_loss:4.3286 train_time:20515ms step_avg:147.59ms
step:150/1750 train_loss:4.4638 train_time:20664ms step_avg:147.60ms
step:151/1750 train_loss:4.2881 train_time:20815ms step_avg:147.63ms
step:152/1750 train_loss:4.2830 train_time:20965ms step_avg:147.64ms
step:153/1750 train_loss:4.3853 train_time:21117ms step_avg:147.67ms
step:154/1750 train_loss:4.3769 train_time:21267ms step_avg:147.69ms
step:155/1750 train_loss:4.2867 train_time:21418ms step_avg:147.71ms
step:156/1750 train_loss:4.3618 train_time:21568ms step_avg:147.73ms
step:157/1750 train_loss:4.4219 train_time:21720ms step_avg:147.75ms
step:158/1750 train_loss:4.2551 train_time:21869ms step_avg:147.76ms
step:159/1750 train_loss:4.3233 train_time:22020ms step_avg:147.79ms
step:160/1750 train_loss:4.1514 train_time:22169ms step_avg:147.80ms
step:161/1750 train_loss:4.3764 train_time:22320ms step_avg:147.82ms
step:162/1750 train_loss:4.3772 train_time:22470ms step_avg:147.83ms
step:163/1750 train_loss:4.3467 train_time:22621ms step_avg:147.85ms
step:164/1750 train_loss:4.2188 train_time:22772ms step_avg:147.87ms
step:165/1750 train_loss:4.3032 train_time:22922ms step_avg:147.89ms
step:166/1750 train_loss:4.3636 train_time:23073ms step_avg:147.90ms
step:167/1750 train_loss:4.2145 train_time:23224ms step_avg:147.92ms
step:168/1750 train_loss:4.3025 train_time:23374ms step_avg:147.94ms
step:169/1750 train_loss:4.1723 train_time:23525ms step_avg:147.96ms
step:170/1750 train_loss:4.0312 train_time:23677ms step_avg:147.98ms
step:171/1750 train_loss:4.2092 train_time:23826ms step_avg:147.99ms
step:172/1750 train_loss:4.2302 train_time:23978ms step_avg:148.01ms
step:173/1750 train_loss:4.2844 train_time:24128ms step_avg:148.02ms
step:174/1750 train_loss:4.4534 train_time:24279ms step_avg:148.04ms
step:175/1750 train_loss:4.2729 train_time:24430ms step_avg:148.06ms
step:176/1750 train_loss:4.1212 train_time:24580ms step_avg:148.07ms
step:177/1750 train_loss:4.0950 train_time:24730ms step_avg:148.08ms
step:178/1750 train_loss:4.2127 train_time:24880ms step_avg:148.10ms
step:179/1750 train_loss:4.1441 train_time:25030ms step_avg:148.11ms
step:180/1750 train_loss:4.1306 train_time:25181ms step_avg:148.12ms
step:181/1750 train_loss:4.3273 train_time:25332ms step_avg:148.14ms
step:182/1750 train_loss:4.1959 train_time:25482ms step_avg:148.15ms
step:183/1750 train_loss:4.1598 train_time:25632ms step_avg:148.16ms
step:184/1750 train_loss:4.1547 train_time:25783ms step_avg:148.18ms
step:185/1750 train_loss:4.2298 train_time:25935ms step_avg:148.20ms
step:186/1750 train_loss:4.1969 train_time:26086ms step_avg:148.21ms
step:187/1750 train_loss:4.2811 train_time:26238ms step_avg:148.24ms
step:188/1750 train_loss:4.1960 train_time:26507ms step_avg:148.92ms
step:189/1750 train_loss:4.1493 train_time:26806ms step_avg:149.76ms
step:190/1750 train_loss:4.2436 train_time:26956ms step_avg:149.76ms
step:191/1750 train_loss:4.1115 train_time:27105ms step_avg:149.75ms
step:192/1750 train_loss:4.0692 train_time:27257ms step_avg:149.76ms
step:193/1750 train_loss:4.2853 train_time:27406ms step_avg:149.76ms
step:194/1750 train_loss:4.2020 train_time:27557ms step_avg:149.77ms
step:195/1750 train_loss:4.3874 train_time:27706ms step_avg:149.76ms
step:196/1750 train_loss:4.2205 train_time:27857ms step_avg:149.77ms
step:197/1750 train_loss:4.0662 train_time:28006ms step_avg:149.77ms
step:198/1750 train_loss:4.1894 train_time:28157ms step_avg:149.77ms
step:199/1750 train_loss:4.0556 train_time:28305ms step_avg:149.76ms
step:200/1750 train_loss:4.1418 train_time:28456ms step_avg:149.77ms
step:201/1750 train_loss:4.0373 train_time:28604ms step_avg:149.76ms
step:202/1750 train_loss:4.2659 train_time:28754ms step_avg:149.76ms
step:203/1750 train_loss:4.0810 train_time:28903ms step_avg:149.76ms
step:204/1750 train_loss:4.2132 train_time:29054ms step_avg:149.76ms
step:205/1750 train_loss:4.2610 train_time:29203ms step_avg:149.76ms
step:206/1750 train_loss:3.9570 train_time:29353ms step_avg:149.76ms
step:207/1750 train_loss:4.0958 train_time:29502ms step_avg:149.76ms
step:208/1750 train_loss:4.1012 train_time:29652ms step_avg:149.76ms
step:209/1750 train_loss:4.2475 train_time:29801ms step_avg:149.75ms
step:210/1750 train_loss:4.2052 train_time:29951ms step_avg:149.75ms
step:211/1750 train_loss:4.0733 train_time:30099ms step_avg:149.75ms
step:212/1750 train_loss:4.1255 train_time:30249ms step_avg:149.75ms
step:213/1750 train_loss:4.0616 train_time:30398ms step_avg:149.74ms
step:214/1750 train_loss:4.1356 train_time:30548ms step_avg:149.74ms
step:215/1750 train_loss:3.9759 train_time:30697ms step_avg:149.74ms
step:216/1750 train_loss:4.0288 train_time:30846ms step_avg:149.74ms
step:217/1750 train_loss:4.0375 train_time:30996ms step_avg:149.74ms
step:218/1750 train_loss:4.0921 train_time:31145ms step_avg:149.74ms
step:219/1750 train_loss:4.0815 train_time:31296ms step_avg:149.74ms
step:220/1750 train_loss:4.0890 train_time:31446ms step_avg:149.74ms
step:221/1750 train_loss:4.1035 train_time:31595ms step_avg:149.74ms
step:222/1750 train_loss:4.0038 train_time:31745ms step_avg:149.74ms
step:223/1750 train_loss:4.0002 train_time:31894ms step_avg:149.74ms
step:224/1750 train_loss:4.3110 train_time:32043ms step_avg:149.73ms
step:225/1750 train_loss:3.9172 train_time:32193ms step_avg:149.74ms
step:226/1750 train_loss:4.0015 train_time:32342ms step_avg:149.73ms
step:227/1750 train_loss:4.0107 train_time:32492ms step_avg:149.73ms
step:228/1750 train_loss:4.1665 train_time:32641ms step_avg:149.73ms
step:229/1750 train_loss:3.9428 train_time:32789ms step_avg:149.72ms
step:230/1750 train_loss:4.0593 train_time:32939ms step_avg:149.72ms
step:231/1750 train_loss:3.9289 train_time:33088ms step_avg:149.72ms
step:232/1750 train_loss:3.9941 train_time:33238ms step_avg:149.72ms
step:233/1750 train_loss:4.1175 train_time:33386ms step_avg:149.71ms
step:234/1750 train_loss:4.0474 train_time:33537ms step_avg:149.72ms
step:235/1750 train_loss:3.9366 train_time:33686ms step_avg:149.71ms
step:236/1750 train_loss:4.1093 train_time:33836ms step_avg:149.72ms
step:237/1750 train_loss:4.1022 train_time:33985ms step_avg:149.71ms
step:238/1750 train_loss:3.9610 train_time:34136ms step_avg:149.72ms
step:239/1750 train_loss:4.1062 train_time:34285ms step_avg:149.71ms
step:240/1750 train_loss:4.1305 train_time:34435ms step_avg:149.72ms
step:241/1750 train_loss:3.9975 train_time:34584ms step_avg:149.71ms
step:242/1750 train_loss:4.1697 train_time:34735ms step_avg:149.72ms
step:243/1750 train_loss:4.0437 train_time:34884ms step_avg:149.72ms
step:244/1750 train_loss:4.0968 train_time:35035ms step_avg:149.72ms
step:245/1750 train_loss:4.1657 train_time:35184ms step_avg:149.72ms
step:246/1750 train_loss:4.0765 train_time:35334ms step_avg:149.72ms
step:247/1750 train_loss:4.0249 train_time:35483ms step_avg:149.72ms
step:248/1750 train_loss:4.1405 train_time:35634ms step_avg:149.72ms
step:249/1750 train_loss:3.9479 train_time:35783ms step_avg:149.72ms
step:250/1750 train_loss:4.0021 train_time:35933ms step_avg:149.72ms
step:250/1750 val_loss:4.0307 train_time:35971ms step_avg:149.88ms
step:251/1750 train_loss:4.0993 train_time:36085ms step_avg:149.73ms
step:252/1750 train_loss:4.1857 train_time:36235ms step_avg:149.73ms
step:253/1750 train_loss:3.9560 train_time:36387ms step_avg:149.74ms
step:254/1750 train_loss:3.9037 train_time:36536ms step_avg:149.74ms
step:255/1750 train_loss:4.0933 train_time:36686ms step_avg:149.74ms
step:256/1750 train_loss:4.0061 train_time:36835ms step_avg:149.74ms
step:257/1750 train_loss:4.0044 train_time:36985ms step_avg:149.74ms
step:258/1750 train_loss:4.0157 train_time:37134ms step_avg:149.73ms
step:259/1750 train_loss:4.0521 train_time:37285ms step_avg:149.74ms
step:260/1750 train_loss:4.0739 train_time:37434ms step_avg:149.74ms
step:261/1750 train_loss:4.0406 train_time:37586ms step_avg:149.75ms
step:262/1750 train_loss:4.0214 train_time:37739ms step_avg:149.76ms
step:263/1750 train_loss:3.9198 train_time:37890ms step_avg:149.76ms
step:264/1750 train_loss:4.0088 train_time:38044ms step_avg:149.78ms
step:265/1750 train_loss:3.8908 train_time:38197ms step_avg:149.79ms
step:266/1750 train_loss:3.9381 train_time:38350ms step_avg:149.80ms
step:267/1750 train_loss:3.9398 train_time:38502ms step_avg:149.81ms
step:268/1750 train_loss:3.9778 train_time:38654ms step_avg:149.82ms
step:269/1750 train_loss:3.8776 train_time:38807ms step_avg:149.83ms
step:270/1750 train_loss:4.1187 train_time:38960ms step_avg:149.85ms
step:271/1750 train_loss:3.9888 train_time:39111ms step_avg:149.85ms
step:272/1750 train_loss:3.9344 train_time:39264ms step_avg:149.86ms
step:273/1750 train_loss:3.9589 train_time:39416ms step_avg:149.87ms
step:274/1750 train_loss:4.0521 train_time:39569ms step_avg:149.88ms
step:275/1750 train_loss:4.0728 train_time:39721ms step_avg:149.89ms
step:276/1750 train_loss:4.2404 train_time:39875ms step_avg:149.91ms
step:277/1750 train_loss:4.0469 train_time:40028ms step_avg:149.92ms
step:278/1750 train_loss:4.1040 train_time:40180ms step_avg:149.92ms
step:279/1750 train_loss:4.0165 train_time:40332ms step_avg:149.93ms
step:280/1750 train_loss:4.2163 train_time:40487ms step_avg:149.95ms
step:281/1750 train_loss:3.9910 train_time:40640ms step_avg:149.96ms
step:282/1750 train_loss:3.9572 train_time:40793ms step_avg:149.97ms
step:283/1750 train_loss:3.9280 train_time:40946ms step_avg:149.99ms
step:284/1750 train_loss:4.0701 train_time:41098ms step_avg:149.99ms
step:285/1750 train_loss:4.0781 train_time:41250ms step_avg:150.00ms
step:286/1750 train_loss:4.1246 train_time:41403ms step_avg:150.01ms
step:287/1750 train_loss:3.9382 train_time:41555ms step_avg:150.02ms
step:288/1750 train_loss:4.0440 train_time:41708ms step_avg:150.03ms
step:289/1750 train_loss:3.9057 train_time:41861ms step_avg:150.04ms
step:290/1750 train_loss:3.8852 train_time:42013ms step_avg:150.04ms
step:291/1750 train_loss:3.9400 train_time:42168ms step_avg:150.06ms
step:292/1750 train_loss:3.8848 train_time:42320ms step_avg:150.07ms
step:293/1750 train_loss:3.9334 train_time:42473ms step_avg:150.08ms
step:294/1750 train_loss:3.9638 train_time:42626ms step_avg:150.09ms
step:295/1750 train_loss:3.8586 train_time:42777ms step_avg:150.10ms
step:296/1750 train_loss:3.8799 train_time:42931ms step_avg:150.11ms
step:297/1750 train_loss:3.8924 train_time:43085ms step_avg:150.12ms
step:298/1750 train_loss:3.9917 train_time:43236ms step_avg:150.13ms
step:299/1750 train_loss:3.8447 train_time:43390ms step_avg:150.14ms
step:300/1750 train_loss:3.9932 train_time:43543ms step_avg:150.15ms
step:301/1750 train_loss:3.9951 train_time:43695ms step_avg:150.16ms
step:302/1750 train_loss:3.9578 train_time:43849ms step_avg:150.17ms
step:303/1750 train_loss:4.0064 train_time:44001ms step_avg:150.17ms
step:304/1750 train_loss:3.9948 train_time:44154ms step_avg:150.18ms
step:305/1750 train_loss:4.4791 train_time:44306ms step_avg:150.19ms
step:306/1750 train_loss:3.9610 train_time:44458ms step_avg:150.20ms
step:307/1750 train_loss:3.8569 train_time:44610ms step_avg:150.20ms
step:308/1750 train_loss:4.0136 train_time:44763ms step_avg:150.21ms
step:309/1750 train_loss:3.8885 train_time:44915ms step_avg:150.22ms
step:310/1750 train_loss:4.1001 train_time:45068ms step_avg:150.23ms
step:311/1750 train_loss:3.9538 train_time:45220ms step_avg:150.23ms
step:312/1750 train_loss:3.8908 train_time:45372ms step_avg:150.24ms
step:313/1750 train_loss:3.9711 train_time:45526ms step_avg:150.25ms
step:314/1750 train_loss:4.0925 train_time:45677ms step_avg:150.25ms
step:315/1750 train_loss:3.9735 train_time:45830ms step_avg:150.26ms
step:316/1750 train_loss:3.8198 train_time:45980ms step_avg:150.26ms
step:317/1750 train_loss:3.8980 train_time:46133ms step_avg:150.27ms
step:318/1750 train_loss:3.9425 train_time:46287ms step_avg:150.28ms
step:319/1750 train_loss:3.9049 train_time:46439ms step_avg:150.29ms
step:320/1750 train_loss:4.0358 train_time:46592ms step_avg:150.30ms
step:321/1750 train_loss:3.9789 train_time:46745ms step_avg:150.31ms
step:322/1750 train_loss:3.9612 train_time:46897ms step_avg:150.31ms
step:323/1750 train_loss:4.0305 train_time:47050ms step_avg:150.32ms
step:324/1750 train_loss:3.9748 train_time:47202ms step_avg:150.32ms
step:325/1750 train_loss:4.0344 train_time:47355ms step_avg:150.33ms
step:326/1750 train_loss:3.9114 train_time:47506ms step_avg:150.34ms
step:327/1750 train_loss:4.4177 train_time:47657ms step_avg:150.34ms
step:328/1750 train_loss:4.0939 train_time:47809ms step_avg:150.34ms
step:329/1750 train_loss:3.8154 train_time:47961ms step_avg:150.35ms
step:330/1750 train_loss:3.7620 train_time:48112ms step_avg:150.35ms
step:331/1750 train_loss:3.9994 train_time:48265ms step_avg:150.36ms
step:332/1750 train_loss:3.9325 train_time:48416ms step_avg:150.36ms
step:333/1750 train_loss:3.9004 train_time:48568ms step_avg:150.36ms
step:334/1750 train_loss:3.8642 train_time:48719ms step_avg:150.37ms
step:335/1750 train_loss:4.0348 train_time:48871ms step_avg:150.37ms
step:336/1750 train_loss:3.9772 train_time:49023ms step_avg:150.38ms
step:337/1750 train_loss:4.4315 train_time:49175ms step_avg:150.38ms
step:338/1750 train_loss:3.9626 train_time:49327ms step_avg:150.39ms
step:339/1750 train_loss:3.8851 train_time:49477ms step_avg:150.39ms
step:340/1750 train_loss:3.9484 train_time:49629ms step_avg:150.39ms
step:341/1750 train_loss:3.8848 train_time:49779ms step_avg:150.39ms
step:342/1750 train_loss:3.8238 train_time:49931ms step_avg:150.39ms
step:343/1750 train_loss:3.8550 train_time:50083ms step_avg:150.40ms
step:344/1750 train_loss:4.0133 train_time:50235ms step_avg:150.40ms
step:345/1750 train_loss:3.8402 train_time:50388ms step_avg:150.41ms
step:346/1750 train_loss:3.7841 train_time:50539ms step_avg:150.41ms
step:347/1750 train_loss:3.8231 train_time:50690ms step_avg:150.42ms
step:348/1750 train_loss:3.8815 train_time:50842ms step_avg:150.42ms
step:349/1750 train_loss:3.8551 train_time:50995ms step_avg:150.43ms
step:350/1750 train_loss:3.5833 train_time:51147ms step_avg:150.43ms
step:351/1750 train_loss:3.8479 train_time:51298ms step_avg:150.43ms
step:352/1750 train_loss:4.2074 train_time:51449ms step_avg:150.44ms
step:353/1750 train_loss:3.6776 train_time:51600ms step_avg:150.44ms
step:354/1750 train_loss:3.9468 train_time:51752ms step_avg:150.44ms
step:355/1750 train_loss:3.8140 train_time:51904ms step_avg:150.45ms
step:356/1750 train_loss:3.9045 train_time:52056ms step_avg:150.45ms