forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdca62101-15d4-4c76-842e-99213fa2508b.txt
2401 lines (2330 loc) · 151 KB
/
dca62101-15d4-4c76-842e-99213fa2508b.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
====================================================================================================
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
if group['nesterov']:
g = g.add(buf, alpha=momentum)
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.dim = dim
self.base = base
self.inv_freq = None
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim))
self.seq_len_cached = seq_len
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
self.cos_cached = freqs.cos().bfloat16()
self.sin_cached = freqs.sin().bfloat16()
return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
def apply_rotary_emb(x, cos, sin):
assert x.ndim == 4 # multihead attention
d = x.shape[3]//2
x1 = x[..., :d]
x2 = x[..., d:]
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat([y1, y2], 3).type_as(x)
class CastedLinear(nn.Linear):
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.n_head = config.n_head
self.n_embd = config.n_embd
self.head_dim = self.n_embd // self.n_head
assert self.n_embd % self.n_head == 0
self.c_q = CastedLinear(self.n_embd, self.n_embd, bias=False)
self.c_k = CastedLinear(self.n_embd, self.n_embd, bias=False)
self.c_v = CastedLinear(self.n_embd, self.n_embd, bias=False)
# output projection
self.c_proj = CastedLinear(self.n_embd, self.n_embd, bias=False)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
self.rotary = Rotary(self.head_dim)
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
def forward(self, x, v1, block_mask):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
k = self.c_k(x).view(B, T, self.n_head, self.head_dim)
v = self.c_v(x).view(B, T, self.n_head, self.head_dim)
if v1 is None:
v1 = v # This happens if we are in the first block. v needs to be accessed by subsequent blocks
v = (1 - self.lamb) * v + self.lamb * v1.view_as(v) # @Grad62304977
cos, sin = self.rotary(q)
q, k = F.rms_norm(q, (q.size(-1),)), F.rms_norm(k, (k.size(-1),)) # QK norm suggested by @Grad62304977
q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y, v1
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = CastedLinear(config.n_embd, 4 * config.n_embd, bias=False)
self.c_proj = CastedLinear(4 * config.n_embd, config.n_embd, bias=False)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config)
self.mlp = MLP(config)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, v1, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x1, v1 = self.attn(F.rms_norm(x, (x.size(-1),)), v1, block_mask)
x = x + x1
x = x + self.mlp(F.rms_norm(x, (x.size(-1),)))
return x, v1
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size, bias=False)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = F.rms_norm(x, (x.size(-1),)) # @Grad62304977
x0 = x
v1 = None
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x, v1 = self.transformer.h[i](x, v1, x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x, v1 = self.transformer.h[self.num_encoder_layers + i](x, v1, x0, block_mask)
x = F.rms_norm(x, (x.size(-1),))
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, B, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.B = B
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * B * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.B * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.B * self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.B*self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
device_batch_size : int = 1 # batch size, in sequences, per device
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1750 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 640 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write('='*100 + '\n')
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
B, T = args.device_batch_size, args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (B * T * ddp_world_size) == 0
val_steps = args.val_tokens // (B * T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (B * ddp_world_size) == 0
train_accumulation_steps = args.batch_size // (B * ddp_world_size)
# load tokens
train_loader = DistributedDataLoader(args.input_bin, B, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, B, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# CUDNN attention is ~4ms faster than Flash, but doesn't get selected by default in PyTorch 2.5.1
from torch.backends.cuda import enable_cudnn_sdp, enable_flash_sdp, enable_math_sdp, enable_mem_efficient_sdp
enable_cudnn_sdp(True)
enable_flash_sdp(False)
enable_mem_efficient_sdp(False)
enable_math_sdp(False)
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# Set the attention blocksize for the current step, in chunks of 64
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
train_loss = loss.detach()
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
if i < train_accumulation_steps:
with model.no_sync(): # there's no need to sync gradients every accumulation step
loss.backward()
else:
loss.backward() # just sync on the last step
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241124+cu124 compiled for CUDA 12.4
nvidia-smi:
Mon Nov 25 00:11:20 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 555.42.06 Driver Version: 555.42.06 CUDA Version: 12.5 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA H100 80GB HBM3 Off | 00000000:18:00.0 Off | 0 |
| N/A 32C P0 69W / 700W | 4MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 Off | 00000000:2A:00.0 Off | 0 |
| N/A 38C P0 102W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 Off | 00000000:3A:00.0 Off | 0 |
| N/A 38C P0 69W / 700W | 4MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 Off | 00000000:5D:00.0 Off | 0 |
| N/A 31C P0 70W / 700W | 4MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 Off | 00000000:84:00.0 Off | 0 |
| N/A 31C P0 71W / 700W | 4MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 Off | 00000000:8B:00.0 Off | 0 |
| N/A 37C P0 71W / 700W | 4MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 Off | 00000000:91:00.0 Off | 0 |
| N/A 35C P0 114W / 700W | 23MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 Off | 00000000:E4:00.0 Off | 0 |
| N/A 31C P0 72W / 700W | 4MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 1 N/A N/A 34414 C /usr/bin/python3 0MiB |
| 6 N/A N/A 34419 C /usr/bin/python3 0MiB |
+-----------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1800000000 across 18 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1750 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1750 train_loss:10.8258 train_time:29542ms step_avg:nanms
step:2/1750 train_loss:10.0684 train_time:29653ms step_avg:nanms
step:3/1750 train_loss:8.3706 train_time:29797ms step_avg:nanms
step:4/1750 train_loss:7.6195 train_time:29945ms step_avg:nanms
step:5/1750 train_loss:7.4804 train_time:30093ms step_avg:nanms
step:6/1750 train_loss:6.9973 train_time:30240ms step_avg:nanms
step:7/1750 train_loss:7.2450 train_time:30387ms step_avg:nanms
step:8/1750 train_loss:6.7453 train_time:30535ms step_avg:nanms
step:9/1750 train_loss:6.6253 train_time:30681ms step_avg:nanms
step:10/1750 train_loss:6.5351 train_time:30830ms step_avg:nanms
step:11/1750 train_loss:6.5154 train_time:110ms step_avg:nanms
step:12/1750 train_loss:6.3730 train_time:257ms step_avg:nanms
step:13/1750 train_loss:6.2362 train_time:406ms step_avg:135.27ms
step:14/1750 train_loss:6.2109 train_time:552ms step_avg:138.06ms
step:15/1750 train_loss:6.1753 train_time:700ms step_avg:140.10ms
step:16/1750 train_loss:6.1661 train_time:848ms step_avg:141.31ms
step:17/1750 train_loss:6.2227 train_time:996ms step_avg:142.31ms
step:18/1750 train_loss:6.0256 train_time:1144ms step_avg:142.99ms
step:19/1750 train_loss:6.0295 train_time:1291ms step_avg:143.44ms
step:20/1750 train_loss:5.7402 train_time:1438ms step_avg:143.83ms
step:21/1750 train_loss:6.0167 train_time:1586ms step_avg:144.20ms
step:22/1750 train_loss:6.2523 train_time:1733ms step_avg:144.38ms
step:23/1750 train_loss:5.9193 train_time:1881ms step_avg:144.70ms
step:24/1750 train_loss:6.1039 train_time:2029ms step_avg:144.92ms
step:25/1750 train_loss:5.7746 train_time:2176ms step_avg:145.09ms
step:26/1750 train_loss:5.6894 train_time:2327ms step_avg:145.42ms
step:27/1750 train_loss:5.8944 train_time:2474ms step_avg:145.54ms
step:28/1750 train_loss:5.4991 train_time:2622ms step_avg:145.65ms
step:29/1750 train_loss:5.7636 train_time:2769ms step_avg:145.72ms
step:30/1750 train_loss:5.5876 train_time:2916ms step_avg:145.80ms
step:31/1750 train_loss:5.5462 train_time:3064ms step_avg:145.89ms
step:32/1750 train_loss:5.4139 train_time:3211ms step_avg:145.94ms
step:33/1750 train_loss:5.7045 train_time:3358ms step_avg:146.01ms
step:34/1750 train_loss:5.6040 train_time:3506ms step_avg:146.08ms
step:35/1750 train_loss:5.6913 train_time:3652ms step_avg:146.08ms
step:36/1750 train_loss:5.6551 train_time:3801ms step_avg:146.17ms
step:37/1750 train_loss:5.5731 train_time:3948ms step_avg:146.21ms
step:38/1750 train_loss:5.4090 train_time:4096ms step_avg:146.28ms
step:39/1750 train_loss:5.4200 train_time:4243ms step_avg:146.33ms
step:40/1750 train_loss:5.3542 train_time:4391ms step_avg:146.35ms
step:41/1750 train_loss:5.3240 train_time:4538ms step_avg:146.38ms
step:42/1750 train_loss:5.2552 train_time:4686ms step_avg:146.43ms
step:43/1750 train_loss:5.3456 train_time:4832ms step_avg:146.44ms
step:44/1750 train_loss:5.3128 train_time:4981ms step_avg:146.49ms
step:45/1750 train_loss:5.4665 train_time:5129ms step_avg:146.54ms
step:46/1750 train_loss:5.2496 train_time:5276ms step_avg:146.55ms
step:47/1750 train_loss:5.1535 train_time:5424ms step_avg:146.58ms
step:48/1750 train_loss:5.3197 train_time:5570ms step_avg:146.58ms
step:49/1750 train_loss:5.2384 train_time:5718ms step_avg:146.61ms
step:50/1750 train_loss:5.3184 train_time:5866ms step_avg:146.65ms
step:51/1750 train_loss:5.2112 train_time:6013ms step_avg:146.66ms
step:52/1750 train_loss:5.1192 train_time:6162ms step_avg:146.70ms
step:53/1750 train_loss:5.2431 train_time:6309ms step_avg:146.71ms
step:54/1750 train_loss:5.1014 train_time:6456ms step_avg:146.72ms
step:55/1750 train_loss:5.4870 train_time:6605ms step_avg:146.77ms
step:56/1750 train_loss:5.1101 train_time:6750ms step_avg:146.75ms
step:57/1750 train_loss:4.9616 train_time:6899ms step_avg:146.79ms
step:58/1750 train_loss:5.0903 train_time:7046ms step_avg:146.80ms
step:59/1750 train_loss:5.0937 train_time:7193ms step_avg:146.81ms
step:60/1750 train_loss:5.1986 train_time:7342ms step_avg:146.83ms
step:61/1750 train_loss:4.9161 train_time:7488ms step_avg:146.83ms
step:62/1750 train_loss:5.0517 train_time:7636ms step_avg:146.84ms
step:63/1750 train_loss:5.0449 train_time:7784ms step_avg:146.88ms
step:64/1750 train_loss:4.9396 train_time:7931ms step_avg:146.88ms
step:65/1750 train_loss:4.9000 train_time:8079ms step_avg:146.89ms
step:66/1750 train_loss:5.0698 train_time:8227ms step_avg:146.91ms
step:67/1750 train_loss:4.9068 train_time:8374ms step_avg:146.92ms
step:68/1750 train_loss:5.2049 train_time:8522ms step_avg:146.93ms
step:69/1750 train_loss:4.8059 train_time:8669ms step_avg:146.93ms
step:70/1750 train_loss:4.9253 train_time:8817ms step_avg:146.94ms
step:71/1750 train_loss:5.0507 train_time:8965ms step_avg:146.96ms
step:72/1750 train_loss:4.9639 train_time:9111ms step_avg:146.95ms
step:73/1750 train_loss:4.8449 train_time:9259ms step_avg:146.97ms
step:74/1750 train_loss:4.9830 train_time:9407ms step_avg:146.98ms
step:75/1750 train_loss:4.9363 train_time:9554ms step_avg:146.99ms
step:76/1750 train_loss:4.8639 train_time:9703ms step_avg:147.02ms
step:77/1750 train_loss:4.9869 train_time:9849ms step_avg:147.00ms
step:78/1750 train_loss:5.1764 train_time:9997ms step_avg:147.02ms
step:79/1750 train_loss:4.8735 train_time:10145ms step_avg:147.02ms
step:80/1750 train_loss:4.9202 train_time:10292ms step_avg:147.03ms
step:81/1750 train_loss:4.7066 train_time:10439ms step_avg:147.03ms
step:82/1750 train_loss:4.8751 train_time:10587ms step_avg:147.04ms
step:83/1750 train_loss:4.8395 train_time:10734ms step_avg:147.04ms
step:84/1750 train_loss:4.8301 train_time:10882ms step_avg:147.05ms
step:85/1750 train_loss:4.6826 train_time:11029ms step_avg:147.05ms
step:86/1750 train_loss:4.9128 train_time:11176ms step_avg:147.06ms
step:87/1750 train_loss:4.7982 train_time:11324ms step_avg:147.07ms
step:88/1750 train_loss:4.8143 train_time:11471ms step_avg:147.07ms
step:89/1750 train_loss:4.7354 train_time:11618ms step_avg:147.07ms
step:90/1750 train_loss:4.6997 train_time:11767ms step_avg:147.09ms
step:91/1750 train_loss:4.6700 train_time:11913ms step_avg:147.07ms
step:92/1750 train_loss:4.8268 train_time:12061ms step_avg:147.08ms
step:93/1750 train_loss:4.6505 train_time:12208ms step_avg:147.09ms
step:94/1750 train_loss:4.6797 train_time:12356ms step_avg:147.09ms
step:95/1750 train_loss:4.7045 train_time:12504ms step_avg:147.10ms
step:96/1750 train_loss:4.6314 train_time:12650ms step_avg:147.09ms
step:97/1750 train_loss:4.6847 train_time:12798ms step_avg:147.10ms
step:98/1750 train_loss:4.6169 train_time:12945ms step_avg:147.10ms
step:99/1750 train_loss:4.6971 train_time:13092ms step_avg:147.10ms
step:100/1750 train_loss:4.7039 train_time:13238ms step_avg:147.09ms
step:101/1750 train_loss:4.5537 train_time:13387ms step_avg:147.11ms
step:102/1750 train_loss:4.7359 train_time:13534ms step_avg:147.11ms
step:103/1750 train_loss:4.6011 train_time:13683ms step_avg:147.13ms
step:104/1750 train_loss:4.5406 train_time:13830ms step_avg:147.12ms
step:105/1750 train_loss:4.5885 train_time:13978ms step_avg:147.13ms
step:106/1750 train_loss:4.6450 train_time:14125ms step_avg:147.13ms
step:107/1750 train_loss:4.5390 train_time:14271ms step_avg:147.13ms
step:108/1750 train_loss:4.3957 train_time:14418ms step_avg:147.13ms
step:109/1750 train_loss:4.5137 train_time:14567ms step_avg:147.14ms
step:110/1750 train_loss:4.5070 train_time:14713ms step_avg:147.13ms
step:111/1750 train_loss:4.4628 train_time:14861ms step_avg:147.14ms
step:112/1750 train_loss:4.5999 train_time:15008ms step_avg:147.14ms
step:113/1750 train_loss:4.5055 train_time:15156ms step_avg:147.14ms
step:114/1750 train_loss:4.3878 train_time:15304ms step_avg:147.15ms
step:115/1750 train_loss:4.5353 train_time:15451ms step_avg:147.15ms
step:116/1750 train_loss:4.5074 train_time:15599ms step_avg:147.16ms
step:117/1750 train_loss:4.4020 train_time:15745ms step_avg:147.15ms
step:118/1750 train_loss:4.6398 train_time:15893ms step_avg:147.16ms
step:119/1750 train_loss:4.4919 train_time:16040ms step_avg:147.16ms
step:120/1750 train_loss:4.3905 train_time:16187ms step_avg:147.16ms
step:121/1750 train_loss:4.3340 train_time:16334ms step_avg:147.15ms
step:122/1750 train_loss:4.4865 train_time:16482ms step_avg:147.16ms
step:123/1750 train_loss:4.3264 train_time:16629ms step_avg:147.16ms
step:124/1750 train_loss:4.6324 train_time:16776ms step_avg:147.16ms
step:125/1750 train_loss:4.4947 train_time:16923ms step_avg:147.16ms
step:125/1750 val_loss:4.4390 train_time:16961ms step_avg:147.49ms
step:126/1750 train_loss:4.4504 train_time:17072ms step_avg:147.17ms
step:127/1750 train_loss:4.4893 train_time:17220ms step_avg:147.18ms
step:128/1750 train_loss:4.4121 train_time:17367ms step_avg:147.18ms
step:129/1750 train_loss:4.7284 train_time:17514ms step_avg:147.18ms
step:130/1750 train_loss:4.4119 train_time:17662ms step_avg:147.18ms
step:131/1750 train_loss:4.4322 train_time:17811ms step_avg:147.20ms
step:132/1750 train_loss:4.3737 train_time:17963ms step_avg:147.24ms
step:133/1750 train_loss:4.4727 train_time:18114ms step_avg:147.26ms
step:134/1750 train_loss:4.2776 train_time:18266ms step_avg:147.30ms
step:135/1750 train_loss:4.4612 train_time:18418ms step_avg:147.34ms
step:136/1750 train_loss:4.2324 train_time:18569ms step_avg:147.37ms
step:137/1750 train_loss:4.3928 train_time:18720ms step_avg:147.40ms
step:138/1750 train_loss:4.2974 train_time:18870ms step_avg:147.42ms
step:139/1750 train_loss:4.3957 train_time:19021ms step_avg:147.45ms
step:140/1750 train_loss:4.4818 train_time:19171ms step_avg:147.47ms
step:141/1750 train_loss:4.3193 train_time:19321ms step_avg:147.49ms
step:142/1750 train_loss:4.3226 train_time:19471ms step_avg:147.51ms
step:143/1750 train_loss:4.2781 train_time:19621ms step_avg:147.53ms
step:144/1750 train_loss:4.3665 train_time:19771ms step_avg:147.54ms
step:145/1750 train_loss:4.3223 train_time:19921ms step_avg:147.56ms
step:146/1750 train_loss:4.1790 train_time:20071ms step_avg:147.58ms
step:147/1750 train_loss:4.3394 train_time:20222ms step_avg:147.61ms
step:148/1750 train_loss:4.3627 train_time:20372ms step_avg:147.62ms
step:149/1750 train_loss:4.3105 train_time:20522ms step_avg:147.64ms
step:150/1750 train_loss:4.4559 train_time:20672ms step_avg:147.66ms
step:151/1750 train_loss:4.2800 train_time:20822ms step_avg:147.68ms
step:152/1750 train_loss:4.2858 train_time:20972ms step_avg:147.69ms
step:153/1750 train_loss:4.3804 train_time:21123ms step_avg:147.71ms
step:154/1750 train_loss:4.3760 train_time:21273ms step_avg:147.73ms
step:155/1750 train_loss:4.2905 train_time:21424ms step_avg:147.75ms
step:156/1750 train_loss:4.3549 train_time:21574ms step_avg:147.77ms
step:157/1750 train_loss:4.4245 train_time:21725ms step_avg:147.79ms
step:158/1750 train_loss:4.2708 train_time:21876ms step_avg:147.81ms
step:159/1750 train_loss:4.3258 train_time:22027ms step_avg:147.83ms
step:160/1750 train_loss:4.1274 train_time:22177ms step_avg:147.84ms
step:161/1750 train_loss:4.3630 train_time:22327ms step_avg:147.86ms
step:162/1750 train_loss:4.3634 train_time:22478ms step_avg:147.88ms
step:163/1750 train_loss:4.3536 train_time:22627ms step_avg:147.89ms
step:164/1750 train_loss:4.2012 train_time:22778ms step_avg:147.91ms
step:165/1750 train_loss:4.3057 train_time:22928ms step_avg:147.92ms
step:166/1750 train_loss:4.3738 train_time:23078ms step_avg:147.94ms
step:167/1750 train_loss:4.2172 train_time:23228ms step_avg:147.95ms
step:168/1750 train_loss:4.2976 train_time:23378ms step_avg:147.96ms
step:169/1750 train_loss:4.1670 train_time:23529ms step_avg:147.98ms
step:170/1750 train_loss:4.0416 train_time:23680ms step_avg:148.00ms
step:171/1750 train_loss:4.2132 train_time:23829ms step_avg:148.01ms
step:172/1750 train_loss:4.2278 train_time:23980ms step_avg:148.02ms
step:173/1750 train_loss:4.2850 train_time:24130ms step_avg:148.04ms
step:174/1750 train_loss:4.4364 train_time:24281ms step_avg:148.05ms
step:175/1750 train_loss:4.2676 train_time:24431ms step_avg:148.06ms
step:176/1750 train_loss:4.1136 train_time:24580ms step_avg:148.07ms
step:177/1750 train_loss:4.0858 train_time:24731ms step_avg:148.09ms
step:178/1750 train_loss:4.2087 train_time:24881ms step_avg:148.10ms
step:179/1750 train_loss:4.1514 train_time:25031ms step_avg:148.11ms
step:180/1750 train_loss:4.1321 train_time:25181ms step_avg:148.12ms
step:181/1750 train_loss:4.3230 train_time:25331ms step_avg:148.13ms
step:182/1750 train_loss:4.1881 train_time:25481ms step_avg:148.15ms
step:183/1750 train_loss:4.1494 train_time:25631ms step_avg:148.16ms
step:184/1750 train_loss:4.1544 train_time:25781ms step_avg:148.17ms
step:185/1750 train_loss:4.2340 train_time:25931ms step_avg:148.18ms
step:186/1750 train_loss:4.1997 train_time:26081ms step_avg:148.19ms
step:187/1750 train_loss:4.2509 train_time:26231ms step_avg:148.20ms
step:188/1750 train_loss:4.1955 train_time:26504ms step_avg:148.90ms
step:189/1750 train_loss:4.1414 train_time:26805ms step_avg:149.75ms
step:190/1750 train_loss:4.2368 train_time:26956ms step_avg:149.76ms
step:191/1750 train_loss:4.1065 train_time:27106ms step_avg:149.76ms
step:192/1750 train_loss:4.0548 train_time:27258ms step_avg:149.77ms
step:193/1750 train_loss:4.2763 train_time:27408ms step_avg:149.77ms
step:194/1750 train_loss:4.1885 train_time:27559ms step_avg:149.78ms
step:195/1750 train_loss:4.3725 train_time:27709ms step_avg:149.78ms
step:196/1750 train_loss:4.2025 train_time:27859ms step_avg:149.78ms
step:197/1750 train_loss:4.0726 train_time:28009ms step_avg:149.78ms
step:198/1750 train_loss:4.1861 train_time:28158ms step_avg:149.78ms
step:199/1750 train_loss:4.0388 train_time:28307ms step_avg:149.77ms
step:200/1750 train_loss:4.1322 train_time:28457ms step_avg:149.77ms
step:201/1750 train_loss:4.0231 train_time:28605ms step_avg:149.77ms
step:202/1750 train_loss:4.2611 train_time:28755ms step_avg:149.77ms
step:203/1750 train_loss:4.0731 train_time:28905ms step_avg:149.77ms
step:204/1750 train_loss:4.2092 train_time:29054ms step_avg:149.76ms
step:205/1750 train_loss:4.2609 train_time:29204ms step_avg:149.76ms
step:206/1750 train_loss:3.9490 train_time:29353ms step_avg:149.76ms
step:207/1750 train_loss:4.0959 train_time:29505ms step_avg:149.77ms
step:208/1750 train_loss:4.1077 train_time:29653ms step_avg:149.76ms
step:209/1750 train_loss:4.2502 train_time:29804ms step_avg:149.77ms
step:210/1750 train_loss:4.2013 train_time:29953ms step_avg:149.76ms
step:211/1750 train_loss:4.0603 train_time:30102ms step_avg:149.76ms
step:212/1750 train_loss:4.1282 train_time:30251ms step_avg:149.76ms
step:213/1750 train_loss:4.0549 train_time:30401ms step_avg:149.76ms
step:214/1750 train_loss:4.1243 train_time:30549ms step_avg:149.75ms
step:215/1750 train_loss:3.9645 train_time:30700ms step_avg:149.76ms
step:216/1750 train_loss:4.0108 train_time:30849ms step_avg:149.75ms
step:217/1750 train_loss:4.0207 train_time:31000ms step_avg:149.76ms
step:218/1750 train_loss:4.0934 train_time:31149ms step_avg:149.75ms
step:219/1750 train_loss:4.0818 train_time:31299ms step_avg:149.76ms
step:220/1750 train_loss:4.1000 train_time:31447ms step_avg:149.75ms
step:221/1750 train_loss:4.1067 train_time:31597ms step_avg:149.75ms
step:222/1750 train_loss:4.0046 train_time:31746ms step_avg:149.74ms
step:223/1750 train_loss:4.0005 train_time:31894ms step_avg:149.74ms
step:224/1750 train_loss:4.3115 train_time:32044ms step_avg:149.74ms
step:225/1750 train_loss:3.9130 train_time:32194ms step_avg:149.74ms
step:226/1750 train_loss:3.9981 train_time:32351ms step_avg:149.77ms
step:227/1750 train_loss:3.9931 train_time:32493ms step_avg:149.74ms
step:228/1750 train_loss:4.1522 train_time:32643ms step_avg:149.74ms
step:229/1750 train_loss:3.9398 train_time:32793ms step_avg:149.74ms
step:230/1750 train_loss:4.0671 train_time:32942ms step_avg:149.74ms
step:231/1750 train_loss:3.9226 train_time:33091ms step_avg:149.73ms
step:232/1750 train_loss:3.9843 train_time:33242ms step_avg:149.74ms
step:233/1750 train_loss:4.1037 train_time:33389ms step_avg:149.73ms
step:234/1750 train_loss:4.0538 train_time:33540ms step_avg:149.73ms
step:235/1750 train_loss:3.9287 train_time:33689ms step_avg:149.73ms
step:236/1750 train_loss:4.1042 train_time:33839ms step_avg:149.73ms
step:237/1750 train_loss:4.0910 train_time:33987ms step_avg:149.72ms
step:238/1750 train_loss:3.9585 train_time:34137ms step_avg:149.72ms
step:239/1750 train_loss:4.1032 train_time:34286ms step_avg:149.72ms
step:240/1750 train_loss:4.1335 train_time:34437ms step_avg:149.72ms
step:241/1750 train_loss:3.9906 train_time:34585ms step_avg:149.72ms
step:242/1750 train_loss:4.1584 train_time:34735ms step_avg:149.72ms
step:243/1750 train_loss:4.0334 train_time:34883ms step_avg:149.71ms
step:244/1750 train_loss:4.0982 train_time:35033ms step_avg:149.72ms
step:245/1750 train_loss:4.1620 train_time:35182ms step_avg:149.71ms
step:246/1750 train_loss:4.0828 train_time:35332ms step_avg:149.71ms
step:247/1750 train_loss:4.0238 train_time:35481ms step_avg:149.71ms
step:248/1750 train_loss:4.1345 train_time:35630ms step_avg:149.71ms
step:249/1750 train_loss:3.9336 train_time:35780ms step_avg:149.71ms
step:250/1750 train_loss:3.9939 train_time:35929ms step_avg:149.70ms
step:250/1750 val_loss:4.0286 train_time:35967ms step_avg:149.86ms
step:251/1750 train_loss:4.0993 train_time:36080ms step_avg:149.71ms
step:252/1750 train_loss:4.1796 train_time:36233ms step_avg:149.72ms
step:253/1750 train_loss:3.9579 train_time:36382ms step_avg:149.72ms
step:254/1750 train_loss:3.9013 train_time:36530ms step_avg:149.71ms
step:255/1750 train_loss:4.0930 train_time:36679ms step_avg:149.71ms
step:256/1750 train_loss:4.0144 train_time:36828ms step_avg:149.71ms
step:257/1750 train_loss:4.0145 train_time:36978ms step_avg:149.71ms
step:258/1750 train_loss:4.0026 train_time:37127ms step_avg:149.71ms
step:259/1750 train_loss:4.0450 train_time:37278ms step_avg:149.71ms
step:260/1750 train_loss:4.0767 train_time:37427ms step_avg:149.71ms
step:261/1750 train_loss:4.0402 train_time:37579ms step_avg:149.72ms
step:262/1750 train_loss:4.0027 train_time:37731ms step_avg:149.73ms
step:263/1750 train_loss:3.9046 train_time:37885ms step_avg:149.74ms
step:264/1750 train_loss:4.0031 train_time:38038ms step_avg:149.76ms
step:265/1750 train_loss:3.8831 train_time:38191ms step_avg:149.77ms
step:266/1750 train_loss:3.9317 train_time:38344ms step_avg:149.78ms
step:267/1750 train_loss:3.9416 train_time:38496ms step_avg:149.79ms
step:268/1750 train_loss:3.9794 train_time:38648ms step_avg:149.80ms
step:269/1750 train_loss:3.8714 train_time:38801ms step_avg:149.81ms
step:270/1750 train_loss:4.1141 train_time:38953ms step_avg:149.82ms
step:271/1750 train_loss:3.9862 train_time:39105ms step_avg:149.83ms
step:272/1750 train_loss:3.9308 train_time:39258ms step_avg:149.84ms
step:273/1750 train_loss:3.9533 train_time:39410ms step_avg:149.85ms
step:274/1750 train_loss:4.0472 train_time:39565ms step_avg:149.87ms
step:275/1750 train_loss:4.0701 train_time:39717ms step_avg:149.88ms
step:276/1750 train_loss:4.2323 train_time:39870ms step_avg:149.89ms
step:277/1750 train_loss:4.0509 train_time:40023ms step_avg:149.90ms
step:278/1750 train_loss:4.1100 train_time:40175ms step_avg:149.91ms
step:279/1750 train_loss:4.0144 train_time:40327ms step_avg:149.92ms
step:280/1750 train_loss:4.2045 train_time:40482ms step_avg:149.93ms
step:281/1750 train_loss:3.9800 train_time:40634ms step_avg:149.94ms
step:282/1750 train_loss:3.9628 train_time:40787ms step_avg:149.95ms
step:283/1750 train_loss:3.9303 train_time:40938ms step_avg:149.96ms
step:284/1750 train_loss:4.0713 train_time:41093ms step_avg:149.97ms
step:285/1750 train_loss:4.0814 train_time:41246ms step_avg:149.98ms
step:286/1750 train_loss:4.1092 train_time:41398ms step_avg:149.99ms
step:287/1750 train_loss:3.9241 train_time:41552ms step_avg:150.01ms
step:288/1750 train_loss:4.0256 train_time:41704ms step_avg:150.01ms
step:289/1750 train_loss:3.9011 train_time:41858ms step_avg:150.03ms
step:290/1750 train_loss:3.8727 train_time:42009ms step_avg:150.03ms
step:291/1750 train_loss:3.9233 train_time:42162ms step_avg:150.04ms
step:292/1750 train_loss:3.8782 train_time:42314ms step_avg:150.05ms
step:293/1750 train_loss:3.9263 train_time:42467ms step_avg:150.06ms
step:294/1750 train_loss:3.9564 train_time:42620ms step_avg:150.07ms
step:295/1750 train_loss:3.8526 train_time:42771ms step_avg:150.07ms
step:296/1750 train_loss:3.8774 train_time:42925ms step_avg:150.09ms
step:297/1750 train_loss:3.8909 train_time:43078ms step_avg:150.10ms
step:298/1750 train_loss:3.9968 train_time:43230ms step_avg:150.10ms
step:299/1750 train_loss:3.8436 train_time:43383ms step_avg:150.11ms
step:300/1750 train_loss:3.9825 train_time:43535ms step_avg:150.12ms
step:301/1750 train_loss:3.9892 train_time:43688ms step_avg:150.13ms
step:302/1750 train_loss:3.9452 train_time:43842ms step_avg:150.14ms
step:303/1750 train_loss:3.9983 train_time:43994ms step_avg:150.15ms
step:304/1750 train_loss:3.9806 train_time:44146ms step_avg:150.16ms
step:305/1750 train_loss:4.4694 train_time:44298ms step_avg:150.16ms
step:306/1750 train_loss:3.9538 train_time:44450ms step_avg:150.17ms
step:307/1750 train_loss:3.8509 train_time:44603ms step_avg:150.18ms
step:308/1750 train_loss:4.0087 train_time:44755ms step_avg:150.18ms
step:309/1750 train_loss:3.8790 train_time:44907ms step_avg:150.19ms
step:310/1750 train_loss:4.0981 train_time:45060ms step_avg:150.20ms
step:311/1750 train_loss:3.9442 train_time:45212ms step_avg:150.21ms
step:312/1750 train_loss:3.8865 train_time:45365ms step_avg:150.21ms
step:313/1750 train_loss:3.9652 train_time:45518ms step_avg:150.22ms
step:314/1750 train_loss:4.0852 train_time:45670ms step_avg:150.23ms
step:315/1750 train_loss:3.9690 train_time:45822ms step_avg:150.24ms
step:316/1750 train_loss:3.8092 train_time:45973ms step_avg:150.24ms
step:317/1750 train_loss:3.8903 train_time:46127ms step_avg:150.25ms
step:318/1750 train_loss:3.9397 train_time:46279ms step_avg:150.26ms
step:319/1750 train_loss:3.9115 train_time:46431ms step_avg:150.26ms
step:320/1750 train_loss:4.0325 train_time:46584ms step_avg:150.27ms
step:321/1750 train_loss:3.9803 train_time:46737ms step_avg:150.28ms
step:322/1750 train_loss:3.9435 train_time:46890ms step_avg:150.29ms
step:323/1750 train_loss:4.0233 train_time:47044ms step_avg:150.30ms
step:324/1750 train_loss:3.9738 train_time:47196ms step_avg:150.31ms
step:325/1750 train_loss:4.0326 train_time:47349ms step_avg:150.31ms
step:326/1750 train_loss:3.9090 train_time:47501ms step_avg:150.32ms
step:327/1750 train_loss:4.4132 train_time:47651ms step_avg:150.32ms
step:328/1750 train_loss:4.0915 train_time:47803ms step_avg:150.32ms
step:329/1750 train_loss:3.8215 train_time:47955ms step_avg:150.33ms
step:330/1750 train_loss:3.7594 train_time:48107ms step_avg:150.33ms
step:331/1750 train_loss:3.9935 train_time:48261ms step_avg:150.35ms
step:332/1750 train_loss:3.9249 train_time:48411ms step_avg:150.35ms
step:333/1750 train_loss:3.8980 train_time:48564ms step_avg:150.35ms
step:334/1750 train_loss:3.8645 train_time:48715ms step_avg:150.36ms
step:335/1750 train_loss:4.0315 train_time:48868ms step_avg:150.36ms
step:336/1750 train_loss:3.9760 train_time:49021ms step_avg:150.37ms
step:337/1750 train_loss:4.4388 train_time:49174ms step_avg:150.38ms
step:338/1750 train_loss:3.9523 train_time:49324ms step_avg:150.38ms
step:339/1750 train_loss:3.8808 train_time:49475ms step_avg:150.38ms
step:340/1750 train_loss:3.9487 train_time:49627ms step_avg:150.39ms
step:341/1750 train_loss:3.8735 train_time:49780ms step_avg:150.39ms
step:342/1750 train_loss:3.8370 train_time:49931ms step_avg:150.39ms
step:343/1750 train_loss:3.8545 train_time:50084ms step_avg:150.40ms
step:344/1750 train_loss:4.0075 train_time:50235ms step_avg:150.40ms
step:345/1750 train_loss:3.8317 train_time:50387ms step_avg:150.41ms
step:346/1750 train_loss:3.7825 train_time:50539ms step_avg:150.42ms
step:347/1750 train_loss:3.8196 train_time:50692ms step_avg:150.42ms
step:348/1750 train_loss:3.8767 train_time:50844ms step_avg:150.43ms
step:349/1750 train_loss:3.8508 train_time:50995ms step_avg:150.43ms
step:350/1750 train_loss:3.5820 train_time:51147ms step_avg:150.43ms
step:351/1750 train_loss:3.8431 train_time:51299ms step_avg:150.44ms
step:352/1750 train_loss:4.2056 train_time:51451ms step_avg:150.44ms
step:353/1750 train_loss:3.6813 train_time:51602ms step_avg:150.44ms
step:354/1750 train_loss:3.9403 train_time:51753ms step_avg:150.45ms
step:355/1750 train_loss:3.8021 train_time:51904ms step_avg:150.45ms
step:356/1750 train_loss:3.8965 train_time:52057ms step_avg:150.45ms
step:357/1750 train_loss:3.7803 train_time:52209ms step_avg:150.46ms
step:358/1750 train_loss:3.8715 train_time:52361ms step_avg:150.46ms
step:359/1750 train_loss:3.8113 train_time:52513ms step_avg:150.47ms
step:360/1750 train_loss:3.4454 train_time:52665ms step_avg:150.47ms
step:361/1750 train_loss:4.0502 train_time:52816ms step_avg:150.47ms