-
Notifications
You must be signed in to change notification settings - Fork 3
/
main.cc
135 lines (118 loc) · 5.8 KB
/
main.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/experimental/micro/examples/micro_speech/audio_provider.h"
#include "tensorflow/lite/experimental/micro/examples/micro_speech/command_responder.h"
#include "tensorflow/lite/experimental/micro/examples/micro_speech/feature_provider.h"
#include "tensorflow/lite/experimental/micro/examples/micro_speech/micro_features/micro_model_settings.h"
#include "tensorflow/lite/experimental/micro/examples/micro_speech/micro_features/tiny_conv_micro_features_model_data.h"
#include "tensorflow/lite/experimental/micro/examples/micro_speech/recognize_commands.h"
#include "tensorflow/lite/experimental/micro/kernels/all_ops_resolver.h"
#include "tensorflow/lite/experimental/micro/micro_error_reporter.h"
#include "tensorflow/lite/experimental/micro/micro_interpreter.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
int main(int argc, char* argv[]) {
// Set up logging.
tflite::MicroErrorReporter micro_error_reporter;
tflite::ErrorReporter* error_reporter = µ_error_reporter;
// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
const tflite::Model* model =
::tflite::GetModel(g_tiny_conv_micro_features_model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
error_reporter->Report(
"Model provided is schema version %d not equal "
"to supported version %d.\n",
model->version(), TFLITE_SCHEMA_VERSION);
return 1;
}
// This pulls in all the operation implementations we need.
tflite::ops::micro::AllOpsResolver resolver;
// Create an area of memory to use for input, output, and intermediate arrays.
// The size of this will depend on the model you're using, and may need to be
// determined by experimentation.
const int tensor_arena_size = 10 * 1024;
uint8_t tensor_arena[tensor_arena_size];
tflite::SimpleTensorAllocator tensor_allocator(tensor_arena,
tensor_arena_size);
// Build an interpreter to run the model with.
tflite::MicroInterpreter interpreter(model, resolver, &tensor_allocator,
error_reporter);
// Get information about the memory area to use for the model's input.
TfLiteTensor* model_input = interpreter.input(0);
if ((model_input->dims->size != 4) || (model_input->dims->data[0] != 1) ||
(model_input->dims->data[1] != kFeatureSliceCount) ||
(model_input->dims->data[2] != kFeatureSliceSize) ||
(model_input->type != kTfLiteUInt8)) {
error_reporter->Report("Bad input tensor parameters in model");
return 1;
}
// Prepare to access the audio spectrograms from a microphone or other source
// that will provide the inputs to the neural network.
FeatureProvider feature_provider(kFeatureElementCount,
model_input->data.uint8);
RecognizeCommands recognizer(error_reporter);
int32_t previous_time = 0;
// Keep reading and analysing audio data in an infinite loop.
while (true) {
// Fetch the spectrogram for the current time.
const int32_t current_time = LatestAudioTimestamp();
int how_many_new_slices = 0;
TfLiteStatus feature_status = feature_provider.PopulateFeatureData(
error_reporter, previous_time, current_time, &how_many_new_slices);
if (feature_status != kTfLiteOk) {
error_reporter->Report("Feature generation failed");
return 1;
}
previous_time = current_time;
// If no new audio samples have been received since last time, don't bother
// running the network model.
if (how_many_new_slices == 0) {
continue;
}
// Run the model on the spectrogram input and make sure it succeeds.
TfLiteStatus invoke_status = interpreter.Invoke();
if (invoke_status != kTfLiteOk) {
error_reporter->Report("Invoke failed");
return 1;
}
// The output from the model is a vector containing the scores for each
// kind of prediction, so figure out what the highest scoring category was.
TfLiteTensor* output = interpreter.output(0);
uint8_t top_category_score = 0;
int top_category_index = 0;
for (int category_index = 0; category_index < kCategoryCount;
++category_index) {
const uint8_t category_score = output->data.uint8[category_index];
if (category_score > top_category_score) {
top_category_score = category_score;
top_category_index = category_index;
}
}
const char* found_command = nullptr;
uint8_t score = 0;
bool is_new_command = false;
TfLiteStatus process_status = recognizer.ProcessLatestResults(
output, current_time, &found_command, &score, &is_new_command);
if (process_status != kTfLiteOk) {
error_reporter->Report(
"RecognizeCommands::ProcessLatestResults() failed");
return 1;
}
// Do something based on the recognized command. The default implementation
// just prints to the error console, but you should replace this with your
// own function for a real application.
RespondToCommand(error_reporter, current_time, found_command, score,
is_new_command);
}
return 0;
}