-
Notifications
You must be signed in to change notification settings - Fork 4
/
trainer.py
262 lines (240 loc) · 10.4 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Ignore warnings
import warnings
warnings.filterwarnings("ignore")
from utils import *
from dataset import *
from meter import *
import os
import numpy as np
import time
import cv2
from torch.optim.lr_scheduler import ReduceLROnPlateau, StepLR
import torch
import torch.nn as nn
from torch.nn import functional as F
import torch.backends.cudnn as cudnn
import pandas as pd
import tifffile as tiff
import torch.optim as optim
import random
import sys
sys.path.insert(0, 'optimizers')
from ralamb import Ralamb
from radam import RAdam
from ranger import Ranger
from lookahead import LookaheadAdam
from over9000 import Over9000
from tqdm import tqdm_notebook as tqdm
class Trainer(object):
'''This class takes care of training and validation of our model'''
def __init__(self,model, optim, loss, lr, bs, name, shape=512, crop_type=0):
self.num_workers = 4
self.batch_size = {"train": bs, "val": 1}
self.accumulation_steps = bs // self.batch_size['train']
self.lr = lr
self.loss = loss
self.optim = optim
self.num_epochs = 0
self.best_dice = 0.
self.best_lb_metric = 0.
self.phases = ["train", "val"]
self.device = torch.device("cuda:0")
torch.set_default_tensor_type("torch.cuda.FloatTensor")
self.net = model
self.name = name
self.do_cutmix = True
if self.loss == 'BCE':
self.criterion = torch.nn.BCEWithLogitsLoss()
elif self.loss == 'BCE+DICE':
self.criterion = BCEDiceLoss(threshold=None) #MODIFIED
elif self.loss == 'TVERSKY':
self.criterion = Tversky()
elif self.loss == 'Dice' or self.loss == 'DICE':
self.criterion = DiceLoss()
elif self.loss == 'BCE+DICE+JACCARD':
self.criterion = BCEDiceJaccardLoss(threshold=None)
else:
raise(Exception(f'{self.loss} is not recognized. Please provide a valid loss function.'))
# Optimizers
if self.optim == 'Over9000':
self.optimizer = Over9000(self.net.parameters(),lr=self.lr)
elif self.optim == 'Adam':
self.optimizer = torch.optim.Adam(self.net.parameters(),lr=self.lr)
elif self.optim == 'RAdam':
self.optimizer = Radam(self.net.parameters(),lr=self.lr)
elif self.optim == 'Ralamb':
self.optimizer = Ralamb(self.net.parameters(),lr=self.lr)
elif self.optim == 'Ranger':
self.optimizer = Ranger(self.net.parameters(),lr=self.lr)
elif self.optim == 'LookaheadAdam':
self.optimizer = LookaheadAdam(self.net.parameters(),lr=self.lr)
else:
raise(Exception(f'{self.optim} is not recognized. Please provide a valid optimizer function.'))
self.scheduler = ReduceLROnPlateau(self.optimizer, factor=0.5, mode="min", patience=4, verbose=True, min_lr = 1e-5)
self.net = self.net.to(self.device)
cudnn.benchmark = True
self.dataloaders = {
phase: provider(
phase=phase,
shape=shape,
crop_type=crop_type,
batch_size=self.batch_size[phase],
num_workers=self.num_workers if phase=='train' else 0,
)
for phase in self.phases
}
self.losses = {phase: [] for phase in self.phases}
self.iou_scores = {phase: [] for phase in self.phases}
self.dice_scores = {phase: [] for phase in self.phases}
self.F2_scores = {phase: [] for phase in self.phases}
self.lb_metric = {phase: [] for phase in self.phases}
def change_loader(self, crop_type=0, shape=512):
'''
crop_type -- 0 (CropNonEmptyMaskIfExists)
-- 1 (RandomResizedCrop)
shape -- 512 (default)
'''
self.dataloaders = {
phase: provider(
phase=phase,
shape=shape,
crop_type=crop_type,
batch_size=self.batch_size[phase],
num_workers=self.num_workers if phase=='train' else 0,
)
for phase in self.phases
}
def freeze(self):
for name, param in self.net.encoder.named_parameters():
if name.find('bn') != -1:
param.requires_grad=True
else:
param.requires_grad=False
def seed_everything(self, seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def load_model(self, name, path='models/'):
state = torch.load(path+name, map_location=lambda storage, loc: storage)
self.net.load_state_dict(state['state_dict'])
self.optimizer.load_state_dict(state['optimizer'])
print("Loaded model with dice: ", state['best_dice'])
def unfreeze(self):
for param in self.net.parameters():
param.requires_grad=True
def forward(self, images, targets):
images = images.to(self.device)
masks = targets.to(self.device)
outputs = self.net(images)
# print(outputs.shape, masks.shape)
# Following two lines are commented due to redundancy. The case is already included in the else clause.
# if self.loss == 'BCE+DICE':
# loss = self.criterion(outputs.permute(0,2,3,1), masks.permute(0,2,3,1))
loss = self.criterion(outputs, masks)
return loss, outputs
def cutmix(self,batch, alpha):
data, targets = batch
indices = torch.randperm(data.size(0))
shuffled_data = data[indices]
shuffled_targets = targets[indices]
lam = np.random.beta(alpha, alpha)
image_h, image_w = data.shape[2:]
cx = np.random.uniform(0, image_w)
cy = np.random.uniform(0, image_h)
w = image_w * np.sqrt(1 - lam)
h = image_h * np.sqrt(1 - lam)
x0 = int(np.round(max(cx - w / 2, 0)))
x1 = int(np.round(min(cx + w / 2, image_w)))
y0 = int(np.round(max(cy - h / 2, 0)))
y1 = int(np.round(min(cy + h / 2, image_h)))
data[:, :, y0:y1, x0:x1] = shuffled_data[:, :, y0:y1, x0:x1]
targets[:, :, y0:y1, x0:x1] = shuffled_targets[:, :, y0:y1, x0:x1]
return data, targets
def iterate(self, epoch, phase):
meter = Meter(phase, epoch)
start = time.strftime("%H:%M:%S")
print(f"Starting epoch: {epoch} | phase: {phase} | ⏰: {start}")
batch_size = self.batch_size[phase]
dataloader = self.dataloaders[phase]
running_loss = 0.0
total_batches = len(dataloader)
tk0 = tqdm(dataloader, total=total_batches)
self.optimizer.zero_grad()
for itr, batch in enumerate(tk0):
if phase == "train" and self.do_cutmix:
images, targets = self.cutmix(batch, 0.5)
elif phase == 'train':
images,targets = batch
else:
images, targets, pad_h, pad_w = batch
loss, outputs = self.forward(images, targets)
loss = loss / self.accumulation_steps
if phase == "train":
loss.backward()
torch.nn.utils.clip_grad_norm_(self.net.parameters(), 1)
if (itr + 1 ) % self.accumulation_steps == 0:
self.optimizer.step()
self.optimizer.zero_grad()
running_loss += loss.item()
outputs = outputs.detach().cpu()
if phase == 'train':
meter.update(targets, outputs)
else:
meter.update(targets[:,:,:-pad_h,:-pad_w], outputs[:,:,:-pad_h,:-pad_w])
tk0.set_postfix(loss=(running_loss / ((itr + 1))))
epoch_loss = (running_loss * self.accumulation_steps) / total_batches
dice, iou, f2, lb_metric = epoch_log(phase, epoch, epoch_loss, meter, start)
self.losses[phase].append(epoch_loss)
self.dice_scores[phase].append(dice)
self.iou_scores[phase].append(iou)
self.F2_scores[phase].append(f2)
self.lb_metric[phase].append(lb_metric)
torch.cuda.empty_cache()
return epoch_loss, dice, lb_metric
def train_end(self):
train_dice = self.dice_scores["train"]
train_loss = self.losses["train"]
train_f2 = self.F2_scores["train"]
train_iou = self.iou_scores["train"]
train_lb_metric = self.lb_metric["train"]
val_dice = self.dice_scores["val"]
val_loss = self.losses["val"]
val_f2 = self.F2_scores["val"]
val_iou = self.iou_scores["val"]
val_lb_metric = self.lb_metric["val"]
df_data=np.array([train_loss,train_dice,train_iou,train_f2,train_lb_metric,val_loss,val_dice,val_iou,val_f2,val_lb_metric]).T
df = pd.DataFrame(df_data,columns = ['train_loss','train_dice','train_iou','train_f2','train_lb_metric','val_loss','val_dice','val_iou','val_f2','val_lb_metric'])
df.to_csv('logs/'+self.name+'.csv')
def fit(self, epochs):
self.num_epochs+=epochs
for epoch in range(self.num_epochs-epochs, self.num_epochs):
self.net.train()
self.iterate(epoch, "train")
state = {
"epoch": epoch,
"best_dice": self.best_dice,
"best_lb_metric": self.best_lb_metric,
"state_dict": self.net.state_dict(),
"optimizer": self.optimizer.state_dict(),
}
self.net.eval()
with torch.no_grad():
val_loss, val_dice, val_lb_metric = self.iterate(epoch, "val")
self.scheduler.step(val_loss)
if val_dice > self.best_dice:
print("* New optimal found according to dice, saving state *")
state["best_dice"] = self.best_dice = val_dice
state["best_lb_metric"] = val_lb_metric
os.makedirs('models/', exist_ok=True)
torch.save(state, 'models/'+self.name+'_best_dice.pth')
if val_lb_metric > self.best_lb_metric:
print("* New optimal found according to lb_metric, saving state *")
state["best_lb_metric"] = self.best_lb_metric = val_lb_metric
state["best_dice"] = val_dice
os.makedirs('models/', exist_ok=True)
torch.save(state, 'models/'+self.name+'_best_lb_metric.pth')
print()
self.train_end()