-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogits_processor.py
323 lines (298 loc) · 13.4 KB
/
logits_processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
from transformers import LogitsProcessor
import torch
class ShortSeqProcessor(LogitsProcessor):
def __init__(self, orig_inputs: torch.Tensor, special_ids):
self.orig_inputs = orig_inputs
special_starts = [
v
for k, v in special_ids.items()
if k.endswith("_start") and not k.startswith("sentence")
]
special_ends = [
v
for k, v in special_ids.items()
if k.endswith("_end") and not k.startswith("sentence")
]
self.special_starts = torch.tensor(special_starts, device=orig_inputs.device)
self.special_ends = torch.tensor(special_ends, device=orig_inputs.device)
self.sentence_start = special_ids["sentence_start"]
self.sentence_end = special_ids["sentence_end"]
# self.mention_start = special_ids['mention_start']
# self.mention_end = special_ids['mention_end']
self.sep = special_ids["sep"]
ent_ids = special_ids["integers"]
self.ent_ids = torch.tensor(ent_ids, device=orig_inputs.device)
self.eos_id = special_ids["eos"]
self.sentence_mask = self.get_sentence_mask(orig_inputs)
def get_sentence_mask(self, orig_inputs: torch.Tensor):
# index from 1 instead of 0
return (orig_inputs == self.sentence_start).cumsum(-1)
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
) -> torch.FloatTensor:
is_sent_start = input_ids == self.sentence_start
is_sent_end = input_ids == self.sentence_end
sent_idx = is_sent_start.sum(-1, keepdim=True)
unclose_sent = (sent_idx.sum(-1) - is_sent_end.sum(-1)) > 0
close_sent = ~unclose_sent
is_sep = input_ids == self.sep
is_end = torch.isin(input_ids, self.special_ends)
is_start = torch.isin(input_ids, self.special_starts)
is_ent = (is_sep.cumsum(-1) - is_end.cumsum(-1)).bool()
unclose_ent = is_ent[:, -1] & unclose_sent
unclose_ment = (is_start.sum(-1) - is_sep.sum(-1)) > 0
close_ent = ~unclose_ent
unclose_ment = close_ent & unclose_ment & unclose_sent
masks = torch.ones_like(scores, dtype=torch.bool)
masks[unclose_sent, self.sentence_end] = False
masks[close_sent, self.sentence_start] = False
assert scores.size(0) % self.orig_inputs.size(0) == 0
num_beams = scores.size(0) // self.orig_inputs.size(0)
# repeat over beams
orig_ids = self.orig_inputs.repeat_interleave(num_beams, 0)
sent_mask = self.sentence_mask.repeat_interleave(num_beams, 0)
cur_sent_mask = sent_mask != sent_idx
sent_ids = orig_ids.masked_fill(cur_sent_mask, self.sentence_end)
masks[unclose_sent] = masks[unclose_sent].scatter(
1, sent_ids[unclose_sent], False
)
masks[unclose_sent, self.sentence_start] = True
masks[unclose_ent, self.ent_ids.unsqueeze(1)] = False
if input_ids.shape[1] > 1:
specials = (
input_ids.unsqueeze(1) == self.special_starts.unsqueeze(1)
).cumsum(-1) - (
input_ids.unsqueeze(1) == self.special_ends.unsqueeze(1)
).cumsum(
-1
)
m = specials > specials[:, :, -1].unsqueeze(-1)
replacement = (
specials[:, :, -1]
.unsqueeze(-1)
.expand(
input_ids.shape[0], self.special_ends.shape[0], input_ids.shape[1]
)
)
specials[m] = replacement[m]
specials_diff = (specials[:, :, 1:] - specials[:, :, :-1]) * torch.arange(
2, input_ids.shape[1] + 1, device=specials.device
)
specials_diff[specials[:, :, -1] == 0, :] = 0
candidates = specials_diff.max(dim=2).values.argmax(dim=1)
masks[
torch.arange(scores.size(0), device=candidates.device)[unclose_ent],
self.special_ends[candidates[unclose_ent]],
] = False
masks[close_ent, self.special_starts.unsqueeze(1)] = False
masks[unclose_ment, self.sep] = False
is_eos = close_sent & (sent_idx.sum(-1) == sent_mask[:, -1])
masks[is_eos] = True
masks[is_eos, self.eos_id] = False
scores.masked_fill_(masks, -float("inf"))
return scores
class IntProcessor(LogitsProcessor):
def __init__(self, orig_inputs, special_ids, seq2seq_type):
"""
:param orig_inputs: original input_ids
:param special_ids: dict with keys:[mention_start, mention_end, sep,
integers]
"""
self.orig_inputs = orig_inputs
self.seq2seq_type = seq2seq_type
self.special_ids = special_ids
special_starts = [
v
for k, v in special_ids.items()
if k.endswith("_start") and not k.startswith("sentence")
]
special_ends = [
v
for k, v in special_ids.items()
if k.endswith("_end") and not k.startswith("sentence")
]
self.special_starts = torch.tensor(special_starts, device=orig_inputs.device)
self.special_ends = torch.tensor(special_ends, device=orig_inputs.device)
self.sep = special_ids["sep"]
ent_ids = special_ids["integers"]
self.ent_ids = torch.tensor(ent_ids, device=orig_inputs.device)
specials = special_starts + [self.sep] + ent_ids + special_ends
if (
self.seq2seq_type == "action"
or self.seq2seq_type == "tagging"
or self.seq2seq_type == "input_feed"
):
self.copy_id = special_ids["copy"]
specials.append(self.copy_id)
self.specials = torch.tensor(specials, device=orig_inputs.device)
self.eos_id = special_ids["eos"]
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
) -> torch.FloatTensor:
"""
:param input_ids: BC x l
:param scores: BC x V
:return:
"""
# input_ids : B x L
is_sep = input_ids == self.sep
is_end = torch.isin(
input_ids, self.special_ends
) # (input_ids == self.mention_end)
is_start = torch.isin(
input_ids, self.special_starts
) # (input_ids == self.mention_start)
is_ent = (is_sep.cumsum(-1) - is_end.cumsum(-1)).bool()
is_copy = (~is_start) & (~is_ent) & (~is_end)
unclose_ent = is_ent[:, -1]
unclose_ment = (is_start.sum(-1) - is_sep.sum(-1)) > 0
unclose_ment = (~unclose_ent) & unclose_ment
# -1 for <pad> at begining
num_copied = is_copy.sum(-1) - 1
masks = torch.ones_like(scores, dtype=torch.bool)
close_ent = ~unclose_ent
num_copied = num_copied.clamp(max=self.orig_inputs.size(1) - 1)
# unclosed ent allows to generate cluster ids
masks[unclose_ent, self.ent_ids.unsqueeze(1)] = False
if input_ids.shape[1] > 1:
specials = (
input_ids.unsqueeze(1) == self.special_starts.unsqueeze(1)
).cumsum(-1) - (
input_ids.unsqueeze(1) == self.special_ends.unsqueeze(1)
).cumsum(
-1
)
m = specials > specials[:, :, -1].unsqueeze(-1)
replacement = (
specials[:, :, -1]
.unsqueeze(-1)
.expand(
input_ids.shape[0], self.special_ends.shape[0], input_ids.shape[1]
)
)
specials[m] = replacement[m]
specials_diff = (specials[:, :, 1:] - specials[:, :, :-1]) * torch.arange(
2, input_ids.shape[1] + 1, device=specials.device
)
specials_diff[specials[:, :, -1] == 0, :] = 0
candidates = specials_diff.max(dim=2).values.argmax(dim=1)
masks[
torch.arange(scores.size(0), device=candidates.device)[unclose_ent],
self.special_ends[candidates[unclose_ent]],
] = False
masks[close_ent, self.special_starts.unsqueeze(1)] = False
masks[unclose_ment, self.sep] = False
# get next copy id
assert scores.size(0) % self.orig_inputs.size(0) == 0
num_beams = scores.size(0) // self.orig_inputs.size(0)
# repeat over beams
orig_ids = self.orig_inputs.repeat_interleave(num_beams, 0)
next_ids = orig_ids[torch.arange(scores.size(0)), num_copied]
if self.seq2seq_type == "tagging":
masks[close_ent, self.copy_id] = False
else:
if self.seq2seq_type == "action" or self.seq2seq_type == "input_feed":
scores[close_ent, next_ids[close_ent]] = scores[close_ent, self.copy_id]
masks[close_ent, next_ids[close_ent]] = False
is_eos = close_ent & (next_ids == self.eos_id)
masks[is_eos, self.specials.unsqueeze(1)] = True
masks[is_eos, self.eos_id] = False
scores.masked_fill_(masks, -float("inf"))
return scores
class NonIntProcessor(LogitsProcessor):
def __init__(self, orig_inputs, special_ids, seq2seq_type, add_mention_end):
"""
:param orig_inputs: original input_ids
:param special_ids: dict with keys:[mention_start, mention_end, sep,
integers]
:param add_mention_end: whether predict mention end before predict
cluster ids
"""
self.orig_inputs = orig_inputs
self.special_ids = special_ids
self.seq2seq_type = seq2seq_type
self.mention_start = special_ids["mention_start"]
if add_mention_end:
self.mention_end = special_ids["mention_end"]
else:
self.mention_end = None
self.cluster_ids = torch.tensor(special_ids["cluster_ids"], dtype=torch.long)
self.cluster_new = special_ids["cluster_new"]
self.copy_id = special_ids["copy"]
self.eos_id = special_ids["eos"]
self.first_cluster_id = special_ids["cluster_ids"][0]
self.last_cluster_id = special_ids["cluster_ids"][-1]
self.add_mention_end = add_mention_end
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
) -> torch.FloatTensor:
"""
:param input_ids: BC x l
:param scores: BC x V
:return:
"""
# input_ids : B x L
cluster_ids = self.cluster_ids.to(input_ids.device)
range_indices = torch.arange(scores.size(0))
is_not_cid = torch.isin(input_ids, cluster_ids, invert=True)
is_not_start = input_ids != self.mention_start
if self.add_mention_end:
is_not_end = input_ids != self.mention_end
unclosed_ent = input_ids[:, -1] == self.mention_end
close_ent = ~unclosed_ent
is_copy = is_not_start & is_not_end & is_not_cid
else:
is_not_end = is_not_cid
is_copy = is_not_start & is_not_end
unclosed_ment = (is_not_start.sum(-1) - is_not_end.sum(-1)) < 0
if self.add_mention_end:
unclosed_ment = close_ent & unclosed_ment
# -1 for <pad> at begining
num_copied = is_copy.sum(-1) - 1
masks = torch.ones_like(scores, dtype=torch.bool)
num_copied = num_copied.clamp(max=self.orig_inputs.size(1) - 1)
# unclosed ent only allows to generate cluster ids or end mention id
# masks[:, self.specials] = False
if self.add_mention_end:
masks[close_ent, self.mention_start] = False
masks[unclosed_ment, self.mention_end] = False
else:
masks[:, self.mention_start] = False
# notice: make sure </mk> and </mk+1> are next to each other in vocab
cluster_input_ids = input_ids.masked_fill(is_not_cid, self.first_cluster_id - 1)
next_cids = cluster_input_ids.amax(-1) + 1
if self.add_mention_end:
has_prev_ends = unclosed_ent & (next_cids > self.first_cluster_id)
masks[unclosed_ent, next_cids[unclosed_ent]] = False
else:
has_prev_ends = unclosed_ment & (next_cids > self.first_cluster_id)
masks[unclosed_ment, next_cids[unclosed_ment]] = False
masks[has_prev_ends] = masks[has_prev_ends].scatter(
1, cluster_input_ids[has_prev_ends], False
)
masks[has_prev_ends, self.first_cluster_id - 1] = True
# get next copy id
assert scores.size(0) % self.orig_inputs.size(0) == 0
num_beams = scores.size(0) // self.orig_inputs.size(0)
# repeat over beams
orig_ids = self.orig_inputs.repeat_interleave(num_beams, 0)
next_ids = orig_ids[range_indices, num_copied]
if self.add_mention_end:
if self.seq2seq_type == "action" or self.seq2seq_type == "input_feed":
scores[close_ent, next_ids[close_ent]] = scores[close_ent, self.copy_id]
scores[unclosed_ent, next_cids[unclosed_ent]] = scores[
unclosed_ent, self.cluster_new
]
masks[close_ent, next_ids[close_ent]] = False
else:
if self.seq2seq_type == "action" or self.seq2seq_type == "input_feed":
scores[range_indices, next_ids] = scores[:, self.copy_id]
scores[unclosed_ment, next_cids[unclosed_ment]] = scores[
unclosed_ment, self.cluster_new
]
masks[range_indices, next_ids] = False
is_eos = next_ids == self.eos_id
masks[is_eos] = True
masks[is_eos, self.eos_id] = False
scores.masked_fill_(masks, -float("inf"))
return scores