forked from nanoant/flops
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvecflops.cc
221 lines (190 loc) · 4.68 KB
/
vecflops.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// x86 AVX FLOPs counter
// Based on:
// http://stackoverflow.com/questions/8389648/how-to-achieve-4-flops-per-cycle
#include <stdint.h>
#include <stdlib.h>
#include <iostream>
#include "openmp.h"
using namespace std;
// define 1 to get single precision and 2x flops boost
#define SINGLE_PRECISION 0
#if SINGLE_PRECISION
#ifdef __AVX__
#define SIMD 8
#else
#define SIMD 4
#endif
typedef float float_t;
typedef int32_t int_t;
typedef uint32_t uint_t;
#define OVERFLOW_MASK 0x80fffffu
#else
#ifdef __AVX__
#define SIMD 4
#else
#define SIMD 2
#endif
typedef double float_t;
typedef int64_t int_t;
typedef uint64_t uint_t;
#define OVERFLOW_MASK 0x800fffffffffffffull
#endif
#define dupn(num) dup ## num
#define dup(x, num) dupn(num)(x)
#define dup1(x) x
#define dup2(x) x, x
#define dup4(x) dup2(x), dup2(x)
#define dup8(x) dup4(x), dup4(x)
#define dup16(x) dup8(x), dup8(x)
#define dup32(x) dup16(x), dup16(x)
#define dup64(x) dup32(x), dup32(x)
typedef float_t fvec_t __attribute__((vector_size((SIMD)*sizeof(float_t))));
typedef int_t ivec_t __attribute__((vector_size((SIMD)*sizeof(int_t))));
typedef uint_t uvec_t __attribute__((vector_size((SIMD)*sizeof(uint_t))));
#define fvec_t(x) (fvec_t){ dup((float_t)x, SIMD) }
#define uvec_t(x) (uvec_t){ dup( (uint_t)x, SIMD) }
float_t test_dp_mac_gen(float_t x,float_t y,size_t iterations){
register fvec_t r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,rA,rB,rC,rD,rE,rF;
// Generate starting data.
r0 = fvec_t( x);
r1 = fvec_t( y);
r2 = fvec_t( y);
r3 = fvec_t( 1.0);
r4 = fvec_t(-1.0);
r5 = fvec_t( 1.0);
r6 = fvec_t(-1.0);
r7 = fvec_t( 1.0);
r8 = fvec_t(-1.0);
r9 = fvec_t( 1.0);
rA = fvec_t(-1.0);
rB = fvec_t( 1.0);
rC = fvec_t(-x);
rD = fvec_t( x);
rE = fvec_t(-y);
rF = fvec_t( y);
uvec_t MASK = uvec_t(OVERFLOW_MASK);
uvec_t vONE = (uvec_t)fvec_t(1.0);
size_t c = 0;
while (c < iterations){
size_t i = 0;
while (i < 1000){
// Here's the meat - the part that really matters.
r0 = r0 * rC;
r1 = r1 + rD;
r2 = r2 * rE;
r3 = r3 - rF;
r4 = r4 * rC;
r5 = r5 + rD;
r6 = r6 * rE;
r7 = r7 - rF;
r8 = r8 * rC;
r9 = r9 + rD;
rA = rA * rE;
rB = rB - rF;
r0 = r0 + rF;
r1 = r1 * rE;
r2 = r2 - rD;
r3 = r3 * rC;
r4 = r4 + rF;
r5 = r5 * rE;
r6 = r6 - rD;
r7 = r7 * rC;
r8 = r8 + rF;
r9 = r9 * rE;
rA = rA - rD;
rB = rB * rC;
r0 = r0 * rC;
r1 = r1 + rD;
r2 = r2 * rE;
r3 = r3 - rF;
r4 = r4 * rC;
r5 = r5 + rD;
r6 = r6 * rE;
r7 = r7 - rF;
r8 = r8 * rC;
r9 = r9 + rD;
rA = rA * rE;
rB = rB - rF;
r0 = r0 + rF;
r1 = r1 * rE;
r2 = r2 - rD;
r3 = r3 * rC;
r4 = r4 + rF;
r5 = r5 * rE;
r6 = r6 - rD;
r7 = r7 * rC;
r8 = r8 + rF;
r9 = r9 * rE;
rA = rA - rD;
rB = rB * rC;
i++;
}
// Need to renormalize to prevent denormal/overflow.
r0 = (fvec_t)((uvec_t)r0 & MASK);
r1 = (fvec_t)((uvec_t)r1 & MASK);
r2 = (fvec_t)((uvec_t)r2 & MASK);
r3 = (fvec_t)((uvec_t)r3 & MASK);
r4 = (fvec_t)((uvec_t)r4 & MASK);
r5 = (fvec_t)((uvec_t)r5 & MASK);
r6 = (fvec_t)((uvec_t)r6 & MASK);
r7 = (fvec_t)((uvec_t)r7 & MASK);
r8 = (fvec_t)((uvec_t)r8 & MASK);
r9 = (fvec_t)((uvec_t)r9 & MASK);
rA = (fvec_t)((uvec_t)rA & MASK);
rB = (fvec_t)((uvec_t)rB & MASK);
r0 = (fvec_t)((uvec_t)r0 | vONE);
r1 = (fvec_t)((uvec_t)r1 | vONE);
r2 = (fvec_t)((uvec_t)r2 | vONE);
r3 = (fvec_t)((uvec_t)r3 | vONE);
r4 = (fvec_t)((uvec_t)r4 | vONE);
r5 = (fvec_t)((uvec_t)r5 | vONE);
r6 = (fvec_t)((uvec_t)r6 | vONE);
r7 = (fvec_t)((uvec_t)r7 | vONE);
r8 = (fvec_t)((uvec_t)r8 | vONE);
r9 = (fvec_t)((uvec_t)r9 | vONE);
rA = (fvec_t)((uvec_t)rA | vONE);
rB = (fvec_t)((uvec_t)rB | vONE);
c++;
}
r0 = r0 + r1;
r2 = r2 + r3;
r4 = r4 + r5;
r6 = r6 + r7;
r8 = r8 + r9;
rA = rA + rB;
r0 = r0 + r2;
r4 = r4 + r6;
r8 = r8 + rA;
r0 = r0 + r4;
r0 = r0 + r8;
float_t out = (float_t)0;
for(size_t s = 0; s < SIMD; s++) out += ((float_t *)&r0)[s];
return out;
}
void test_dp_mac_gen(int tds,size_t iterations){
float_t *sum = (float_t*)malloc(tds * sizeof(float_t));
float_t start = get_wtime();
#pragma omp parallel num_threads(tds)
{
float_t ret = test_dp_mac_gen((float_t)1.1,(float_t)2.1,iterations);
sum[omp_get_thread_num()] = ret;
}
float_t secs = get_wtime() - start;
uint64_t ops = 48 * 1000 * iterations * tds * SIMD;
cout << "Seconds = " << secs << endl;
cout << "FP Ops = " << ops << endl;
cout << "GFLOPs = " << ops / 1e9 / secs << endl;
float_t out = 0;
int c = 0;
while (c < tds){
out += sum[c++];
}
cout << "sum = " << out << endl;
cout << endl;
free(sum);
}
int main(int argc, char const *argv[])
{
test_dp_mac_gen(omp_get_max_threads(), argc >= 2 ? atol(argv[1]) : 1000000);
return 0;
}