forked from eriklindernoren/PyTorch-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathccgan.py
170 lines (131 loc) · 5.96 KB
/
ccgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import argparse
import os
import numpy as np
import math
import torchvision.transforms as transforms
from torchvision.utils import save_image
from PIL import Image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
from datasets import *
from models import *
import torch.nn as nn
import torch.nn.functional as F
import torch
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=8, help="size of the batches")
parser.add_argument("--dataset_name", type=str, default="img_align_celeba", help="name of the dataset")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=128, help="size of each image dimension")
parser.add_argument("--mask_size", type=int, default=32, help="size of random mask")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=500, help="interval between image sampling")
opt = parser.parse_args()
print(opt)
cuda = True if torch.cuda.is_available() else False
input_shape = (opt.channels, opt.img_size, opt.img_size)
# Loss function
adversarial_loss = torch.nn.MSELoss()
# Initialize generator and discriminator
generator = Generator(input_shape)
discriminator = Discriminator(input_shape)
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
# Initialize weights
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)
# Dataset loader
transforms_ = [
transforms.Resize((opt.img_size, opt.img_size), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
transforms_lr = [
transforms.Resize((opt.img_size // 4, opt.img_size // 4), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
dataloader = DataLoader(
ImageDataset("../../data/%s" % opt.dataset_name, transforms_x=transforms_, transforms_lr=transforms_lr),
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
)
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
def apply_random_mask(imgs):
idx = np.random.randint(0, opt.img_size - opt.mask_size, (imgs.shape[0], 2))
masked_imgs = imgs.clone()
for i, (y1, x1) in enumerate(idx):
y2, x2 = y1 + opt.mask_size, x1 + opt.mask_size
masked_imgs[i, :, y1:y2, x1:x2] = -1
return masked_imgs
def save_sample(saved_samples):
# Generate inpainted image
gen_imgs = generator(saved_samples["masked"], saved_samples["lowres"])
# Save sample
sample = torch.cat((saved_samples["masked"].data, gen_imgs.data, saved_samples["imgs"].data), -2)
save_image(sample, "images/%d.png" % batches_done, nrow=5, normalize=True)
saved_samples = {}
for epoch in range(opt.n_epochs):
for i, batch in enumerate(dataloader):
imgs = batch["x"]
imgs_lr = batch["x_lr"]
masked_imgs = apply_random_mask(imgs)
# Adversarial ground truths
valid = Variable(Tensor(imgs.shape[0], *discriminator.output_shape).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(imgs.shape[0], *discriminator.output_shape).fill_(0.0), requires_grad=False)
if cuda:
imgs = imgs.type(Tensor)
imgs_lr = imgs_lr.type(Tensor)
masked_imgs = masked_imgs.type(Tensor)
real_imgs = Variable(imgs)
imgs_lr = Variable(imgs_lr)
masked_imgs = Variable(masked_imgs)
# -----------------
# Train Generator
# -----------------
optimizer_G.zero_grad()
# Generate a batch of images
gen_imgs = generator(masked_imgs, imgs_lr)
# Loss measures generator's ability to fool the discriminator
g_loss = adversarial_loss(discriminator(gen_imgs), valid)
g_loss.backward()
optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(discriminator(real_imgs), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
d_loss = 0.5 * (real_loss + fake_loss)
d_loss.backward()
optimizer_D.step()
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
)
# Save first ten samples
if not saved_samples:
saved_samples["imgs"] = real_imgs[:1].clone()
saved_samples["masked"] = masked_imgs[:1].clone()
saved_samples["lowres"] = imgs_lr[:1].clone()
elif saved_samples["imgs"].size(0) < 10:
saved_samples["imgs"] = torch.cat((saved_samples["imgs"], real_imgs[:1]), 0)
saved_samples["masked"] = torch.cat((saved_samples["masked"], masked_imgs[:1]), 0)
saved_samples["lowres"] = torch.cat((saved_samples["lowres"], imgs_lr[:1]), 0)
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
save_sample(saved_samples)