-
-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
hubconf.py
467 lines (376 loc) · 21.7 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# Ultralytics YOLOv3 🚀, AGPL-3.0 license
"""
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5.
Usage:
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
"""
import torch
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
"""
Creates or loads a YOLOv3 model with specified configurations and optional pretrained weights.
Args:
name (str): Model name such as 'yolov5s' or a path to a model checkpoint file, e.g., 'path/to/best.pt'.
pretrained (bool): Whether to load pretrained weights into the model. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of model classes. Default is 80.
autoshape (bool): Whether to apply the YOLOv3 .autoshape() wrapper to the model for handling multiple input
types. Default is True.
verbose (bool): If True, print all information to the screen. Default is True.
device (str | torch.device | None): Device to use for model parameters ('cpu', 'cuda', etc.). If None, defaults
to the best available device.
Returns:
torch.nn.Module: YOLOv3 model loaded with or without pretrained weights.
Example:
```python
import torch
model = _create('yolov5s')
```
Raises:
Exception: If an error occurs while loading the model, returns an error message with a helpful URL:
"https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading".
"""
from pathlib import Path
from models.common import AutoShape, DetectMultiBackend
from models.experimental import attempt_load
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
from utils.downloads import attempt_download
from utils.general import LOGGER, ROOT, check_requirements, intersect_dicts, logging
from utils.torch_utils import select_device
if not verbose:
LOGGER.setLevel(logging.WARNING)
check_requirements(ROOT / "requirements.txt", exclude=("opencv-python", "tensorboard", "thop"))
name = Path(name)
path = name.with_suffix(".pt") if name.suffix == "" and not name.is_dir() else name # checkpoint path
try:
device = select_device(device)
if pretrained and channels == 3 and classes == 80:
try:
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
if autoshape:
if model.pt and isinstance(model.model, ClassificationModel):
LOGGER.warning(
"WARNING ⚠️ YOLOv3 ClassificationModel is not yet AutoShape compatible. "
"You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224)."
)
elif model.pt and isinstance(model.model, SegmentationModel):
LOGGER.warning(
"WARNING ⚠️ YOLOv3 SegmentationModel is not yet AutoShape compatible. "
"You will not be able to run inference with this model."
)
else:
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
except Exception:
model = attempt_load(path, device=device, fuse=False) # arbitrary model
else:
cfg = list((Path(__file__).parent / "models").rglob(f"{path.stem}.yaml"))[0] # model.yaml path
model = DetectionModel(cfg, channels, classes) # create model
if pretrained:
ckpt = torch.load(attempt_download(path), map_location=device) # load
csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32
csd = intersect_dicts(csd, model.state_dict(), exclude=["anchors"]) # intersect
model.load_state_dict(csd, strict=False) # load
if len(ckpt["model"].names) == classes:
model.names = ckpt["model"].names # set class names attribute
if not verbose:
LOGGER.setLevel(logging.INFO) # reset to default
return model.to(device)
except Exception as e:
help_url = "https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading"
s = f"{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help."
raise Exception(s) from e
def custom(path="path/to/model.pt", autoshape=True, _verbose=True, device=None):
"""
Loads a custom or local YOLOv3 model from a specified path, with options for autoshaping and device assignment.
Args:
path (str): Path to the model file. Supports both local and URL paths.
autoshape (bool): If True, applies the YOLOv3 `.autoshape()` wrapper to allow for various input formats. Default is True.
_verbose (bool): If True, outputs detailed information. Otherwise, limits verbosity. Default is True.
device (str | torch.device | None): Device to load the model on. Default is None, which uses the available GPU if
possible.
Returns:
(torch.nn.Module): The loaded YOLOv3 model, either with or without autoshaping applied.
Raises:
Exception: If the model loading fails due to invalid path or incompatible model state, with helpful suggestions
including a reference to the troubleshooting page:
https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading
Examples:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/best.pt')
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/best.pt', autoshape=False, device='cpu')
```
"""
return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Instantiates a YOLOv5n model with optional pretrained weights, configurable input channels, number of classes,
autoshaping, and device selection.
Args:
pretrained (bool): If True, loads pretrained weights into the model. Defaults to True.
channels (int): Number of input channels. Defaults to 3.
classes (int): Number of detection classes. Defaults to 80.
autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model for various input formats like file/URI/PIL/cv2/np
and adds non-maximum suppression (NMS). Defaults to True.
_verbose (bool): If True, prints detailed information to the screen. Defaults to True.
device (str | torch.device | None): Device to use for model computations (e.g., 'cpu', 'cuda'). If None, the best
available device is automatically selected. Defaults to None.
Returns:
torch.nn.Module: The instantiated YOLOv5n model.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5n') # using official model
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5n') # from specific branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5n.pt') # using custom/local model
model = torch.hub.load('.', 'custom', 'yolov5n.pt', source='local') # from local repository
```
Note:
PyTorch Hub models can be explored at https://pytorch.org/hub/ultralytics_yolov5. This allows easy model loading and usage.
"""
return _create("yolov5n", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Load the YOLOv5s model with customizable options for pretrained weights, input channels, number of classes,
autoshape functionality, and device selection.
Args:
pretrained (bool, optional): If True, loads model with pretrained weights. Default is True.
channels (int, optional): Specifies the number of input channels. Default is 3.
classes (int, optional): Defines the number of model classes. Default is 80.
autoshape (bool, optional): Applies YOLOv5 .autoshape() wrapper to the model for enhanced usability. Default is True.
_verbose (bool, optional): If True, prints detailed information during model loading. Default is True.
device (str | torch.device | None, optional): Specifies the device to load the model on. Accepts 'cpu', 'cuda', or
torch.device. Default is None, which automatically selects the best available option.
Returns:
torch.nn.Module: The initialized YOLOv5s model loaded with the specified options.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
```
For more information, refer to [PyTorch Hub models](https://pytorch.org/hub/ultralytics_yolov5).
"""
return _create("yolov5s", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Loads the YOLOv5m model with options for pretrained weights, input channels, number of classes, autoshape
functionality, and device selection.
Args:
pretrained (bool, optional): If True, loads pretrained weights into the model. Default is True.
channels (int, optional): Number of input channels for the model. Default is 3.
classes (int, optional): Number of model classes. Default is 80.
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper for handling multiple input types and NMS.
Default is True.
_verbose (bool, optional): If True, prints detailed information during model loading. Default is True.
device (str | torch.device | None, optional): Device for model computations (e.g., 'cpu', 'cuda'). Automatically
selects the best available device if None. Default is None.
Returns:
torch.nn.Module: The instantiated YOLOv5m model.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5m', pretrained=True)
```
"""
return _create("yolov5m", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Load the YOLOv5l model with customizable options for pretrained weights, input channels, number of classes,
autoshape functionality, and device selection.
Args:
pretrained (bool, optional): If True, load model with pretrained weights. Default is True.
channels (int, optional): Specifies the number of input channels. Default is 3.
classes (int, optional): Defines the number of model classes. Default is 80.
autoshape (bool, optional): Applies the YOLOv5 .autoshape() wrapper to the model for enhanced usability. Default is
True.
_verbose (bool, optional): If True, prints detailed information during model loading. Default is True.
device (str | torch.device | None, optional): Specifies the device to load the model on. Accepts 'cpu', 'cuda', or
torch.device. Default is None, which automatically selects the best available option.
Returns:
torch.nn.Module: The initialized YOLOv5l model loaded with the specified options.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5l', pretrained=True)
```
For more information, refer to [PyTorch Hub models](https://pytorch.org/hub/ultralytics_yolov5).
"""
return _create("yolov5l", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Load the YOLOv5x model with options for pretrained weights, number of input channels, classes, autoshaping, and
device selection.
Args:
pretrained (bool, optional): If True, loads the model with pretrained weights. Defaults to True.
channels (int, optional): Number of input channels. Defaults to 3.
classes (int, optional): Number of detection classes. Defaults to 80.
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper, enabling various input formats and
non-maximum suppression (NMS). Defaults to True.
_verbose (bool, optional): If True, prints detailed information during model loading. Defaults to True.
device (str | torch.device | None, optional): Device to use for model parameters (e.g., 'cpu', 'cuda'). Defaults to
None, selecting the best available device automatically.
Returns:
torch.nn.Module: The YOLOv5x model loaded with the specified configuration.
Examples:
```python
import torch
# Load YOLOv5x model with default settings
model = torch.hub.load('ultralytics/yolov5', 'yolov5x')
# Load YOLOv5x model with custom device
model = torch.hub.load('ultralytics/yolov5', 'yolov5x', device='cuda:0')
```
For more details, refer to [PyTorch Hub models](https://pytorch.org/hub/ultralytics_yolov5).
"""
return _create("yolov5x", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Loads the YOLOv5n6 model with options for pretrained weights, input channels, classes, autoshaping, verbosity, and
device assignment.
Args:
pretrained (bool, optional): If True, loads pretrained weights into the model. Default is True.
channels (int, optional): Number of input channels. Default is 3.
classes (int, optional): Number of model classes. Default is 80.
autoshape (bool, optional): If True, applies the YOLOv3 .autoshape() wrapper to the model. Default is True.
_verbose (bool, optional): If True, prints all information to the screen. Default is True.
device (str | torch.device | None, optional): Device to use for model parameters, e.g., 'cpu', '0', or torch.device.
Default is None.
Returns:
torch.nn.Module: YOLOv5n6 model loaded on the specified device and configured as per the provided options.
Notes:
For more information on PyTorch Hub models, refer to: https://pytorch.org/hub/ultralytics_yolov5
Example:
```python
model = yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device='cuda')
```
"""
return _create("yolov5n6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Loads the YOLOv5s6 model with options for weights, channels, classes, autoshaping, and device selection.
Args:
pretrained (bool, optional): If True, loads pretrained weights into the model. Defaults to True.
channels (int, optional): Number of input channels. Defaults to 3.
classes (int, optional): Number of model classes. Defaults to 80.
autoshape (bool, optional): Apply YOLOv5 .autoshape() wrapper to the model. Defaults to True.
_verbose (bool, optional): If True, prints detailed information to the screen. Defaults to True.
device (str | torch.device | None, optional): Device to use for model parameters, e.g., 'cpu', 'cuda:0'.
If None, it will select the appropriate device automatically. Defaults to None.
Returns:
torch.nn.Module: The YOLOv5s6 model, ready for inference or further training.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s6', pretrained=True, channels=3, classes=80)
model.eval() # Set the model to evaluation mode
```
For more details, see the official documentation at:
https://github.com/ultralytics/yolov5
"""
return _create("yolov5s6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Loads YOLOv5m6 model with options for pretrained weights, input channels, number of classes, autoshaping, and device
selection.
Args:
pretrained (bool): Whether to load pretrained weights into the model. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of model classes. Default is 80.
autoshape (bool): Whether to apply YOLOv5 .autoshape() wrapper to the model. Default is True.
_verbose (bool): Whether to print all information to the screen. Default is True.
device (str | torch.device | None): Device to use for model parameters, e.g., 'cpu', 'cuda', 'mps', or torch device.
Default is None.
Returns:
YOLOv5m6 model (torch.nn.Module): The instantiated YOLOv5m6 model with specified options.
Example:
```python
import torch
# Load YOLOv5m6 model with default settings
model = torch.hub.load('ultralytics/yolov5', 'yolov5m6')
# Load custom YOLOv5m6 model from a local path with specific options
model = torch.hub.load('.', 'yolov5m6', pretrained=False, channels=1, classes=10, device='cuda')
```
Notes:
For more detailed documentation, visit https://github.com/ultralytics/yolov5
"""
return _create("yolov5m6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Loads the YOLOv5l6 model with options for pretrained weights, input channels, the number of classes, autoshaping,
and device selection.
Args:
pretrained (bool, optional): If True, loads pretrained weights into the model. Default is True.
channels (int, optional): Number of input channels. Default is 3.
classes (int, optional): Number of model classes. Default is 80.
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper to the model for automatic shape
inference. Default is True.
_verbose (bool, optional): If True, prints all information to the screen. Default is True.
device (str | torch.device | None, optional): Device to use for the model parameters, e.g., 'cpu', 'cuda', or
a specific GPU like 'cuda:0'. Default is None, which means the best available device will be selected
automatically.
Returns:
yolov5.models.yolo.DetectionModel: YOLOv5l6 model initialized with defined custom configurations.
Examples:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5l6') # Load YOLOv5l6 model
```
Note:
For more details, visit the [Ultralytics YOLOv5 GitHub repository](https://github.com/ultralytics/yolov5).
"""
return _create("yolov5l6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Loads the YOLOv5x6 model, allowing customization for pretrained weights, input channels, and model classes.
Args:
pretrained (bool): If True, loads the model with pretrained weights. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of output classes for the model. Default is 80.
autoshape (bool): If True, applies the .autoshape() wrapper for inference on diverse input formats. Default is True.
_verbose (bool): If True, prints detailed information during model loading. Default is True.
device (str | torch.device | None): Specifies the device to load the model on ('cpu', 'cuda', etc.). Default is None,
which uses the best available device.
Returns:
torch.nn.Module: The YOLOv5x6 model with the specified configurations.
Example:
```python
from ultralytics import yolov5x6
# Load the model with default settings
model = yolov5x6()
# Load the model with custom configurations
model = yolov5x6(pretrained=False, channels=1, classes=10, autoshape=False, device='cuda')
```
Notes:
For more information, refer to the YOLOv5 repository: https://github.com/ultralytics/yolov5
"""
return _create("yolov5x6", pretrained, channels, classes, autoshape, _verbose, device)
if __name__ == "__main__":
import argparse
from pathlib import Path
import numpy as np
from PIL import Image
from utils.general import cv2, print_args
# Argparser
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="yolov5s", help="model name")
opt = parser.parse_args()
print_args(vars(opt))
# Model
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
# model = custom(path='path/to/model.pt') # custom
# Images
imgs = [
"data/images/zidane.jpg", # filename
Path("data/images/zidane.jpg"), # Path
"https://ultralytics.com/images/zidane.jpg", # URI
cv2.imread("data/images/bus.jpg")[:, :, ::-1], # OpenCV
Image.open("data/images/bus.jpg"), # PIL
np.zeros((320, 640, 3)),
] # numpy
# Inference
results = model(imgs, size=320) # batched inference
# Results
results.print()
results.save()