diff --git a/data/SKU-110K.yaml b/data/SKU-110K.yaml new file mode 100644 index 000000000000..a8c1f25b385a --- /dev/null +++ b/data/SKU-110K.yaml @@ -0,0 +1,52 @@ +# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 +# Train command: python train.py --data SKU-110K.yaml +# Default dataset location is next to YOLOv5: +# /parent_folder +# /datasets/SKU-110K +# /yolov5 + + +# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/] +train: ../datasets/SKU-110K/train.txt # 8219 images +val: ../datasets/SKU-110K/val.txt # 588 images +test: ../datasets/SKU-110K/test.txt # 2936 images + +# number of classes +nc: 1 + +# class names +names: [ 'object' ] + + +# download command/URL (optional) -------------------------------------------------------------------------------------- +download: | + import shutil + from tqdm import tqdm + from utils.general import np, pd, Path, download, xyxy2xywh + + # Download + datasets = Path('../datasets') # download directory + urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz'] + download(urls, dir=datasets, delete=False) + + # Rename directories + dir = (datasets / 'SKU-110K') + if dir.exists(): + shutil.rmtree(dir) + (datasets / 'SKU110K_fixed').rename(dir) # rename dir + (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir + + # Convert labels + names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names + for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv': + x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations + images, unique_images = x[:, 0], np.unique(x[:, 0]) + with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f: + f.writelines(f'./images/{s}\n' for s in unique_images) + for im in tqdm(unique_images, desc=f'Converting {dir / d}'): + cls = 0 # single-class dataset + with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f: + for r in x[images == im]: + w, h = r[6], r[7] # image width, height + xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance + f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label