diff --git a/build/docker-compose.yml b/build/docker-compose.yml index 1372dfdb..cb719fb8 100644 --- a/build/docker-compose.yml +++ b/build/docker-compose.yml @@ -62,7 +62,7 @@ services: tty: true shm_size: 2gb #command: bash -c "sleep 10 && python3 /opt/leaderboard/leaderboard/leaderboard_evaluator.py --debug=0 --routes=/opt/leaderboard/data/routes_devtest.xml --agent=/opt/leaderboard/leaderboard/autoagents/npc_agent.py --host=carla-simulator --track=SENSORS" - # command: bash -c "sleep 10 && roslaunch agent/launch/dev.launch" + #command: bash -c "sleep 10 && roslaunch agent/launch/dev.launch" command: bash -c "sleep 10 && sudo chown -R carla:carla ../code/ && sudo chmod -R a+w ../code/ && python3 /opt/leaderboard/leaderboard/leaderboard_evaluator.py --debug=0 --routes=/opt/leaderboard/data/routes_devtest.xml --agent=/workspace/code/agent/src/agent/agent.py --host=paf23-carla-simulator-1 --track=MAP" logging: diff --git a/code/perception/launch/perception.launch b/code/perception/launch/perception.launch index 07760f50..163dc92f 100644 --- a/code/perception/launch/perception.launch +++ b/code/perception/launch/perception.launch @@ -12,12 +12,12 @@ - + - + @@ -38,10 +38,10 @@ - + - + diff --git a/code/perception/src/vision_node.py b/code/perception/src/vision_node.py index f8f32975..24d42dae 100755 --- a/code/perception/src/vision_node.py +++ b/code/perception/src/vision_node.py @@ -1,5 +1,6 @@ #!/usr/bin/env python3 +from time import perf_counter from ros_compatibility.node import CompatibleNode import ros_compatibility as roscomp import torch @@ -40,20 +41,17 @@ def __init__(self, name, **kwargs): super().__init__(name, **kwargs) self.model_dict = { "fasterrcnn_resnet50_fpn_v2": - (fasterrcnn_resnet50_fpn_v2( - weights=FasterRCNN_ResNet50_FPN_V2_Weights.DEFAULT), + (fasterrcnn_resnet50_fpn_v2, FasterRCNN_ResNet50_FPN_V2_Weights.DEFAULT, "detection", "pyTorch"), "fasterrcnn_mobilenet_v3_large_320_fpn": - (fasterrcnn_mobilenet_v3_large_320_fpn( - weights=FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.DEFAULT), + (fasterrcnn_mobilenet_v3_large_320_fpn, FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.DEFAULT, "detection", "pyTorch"), "deeplabv3_resnet101": - (deeplabv3_resnet101( - weights=DeepLabV3_ResNet101_Weights.DEFAULT), + (deeplabv3_resnet101, DeepLabV3_ResNet101_Weights.DEFAULT, "segmentation", "pyTorch"), @@ -83,6 +81,7 @@ def __init__(self, name, **kwargs): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.depth_images = [] + self.DEBUG = False # publish / subscribe setup self.setup_camera_subscriptions() @@ -95,7 +94,10 @@ def __init__(self, name, **kwargs): # model setup model_info = self.model_dict[self.get_param("model")] - self.model = model_info[0] + if model_info[3] == "pyTorch": + self.model = model_info[0](weights=model_info[1]) + else: + self.model = model_info[0] self.weights = model_info[1] self.type = model_info[2] self.framework = model_info[3] @@ -111,13 +113,10 @@ def __init__(self, name, **kwargs): for param in self.model.parameters(): param.requires_grad = False self.model.to(self.device) - # ultralytics setup if self.framework == "ultralytics": self.model = self.model(self.weights) - # tensorflow setup - def setup_camera_subscriptions(self): self.new_subscription( msg_type=numpy_msg(ImageMsg), @@ -214,37 +213,56 @@ def predict_torch(self, image): return vision_result def predict_ultralytics(self, image): + start = perf_counter() + cv_image = self.bridge.imgmsg_to_cv2(img_msg=image, desired_encoding='passthrough') cv_image = cv2.cvtColor(cv_image, cv2.COLOR_RGB2BGR) - output = self.model(cv_image, half=True, verbose=False) + output = self.model.predict(cv_image, half=True, verbose=False)[0] + + s1 = perf_counter() + + if 9 in output.boxes.cls: + self.process_traffic_lights(output, cv_image, image.header) + + s2 = perf_counter() + + box_img = self.calc_draw_distance(output.boxes, cv_image) + + now = perf_counter() + if self.DEBUG: + self.loginfo("S1: {}, S2: {}, S3: {}, Total: {}".format( + round(s1 - start, 4), round(s2 - s1, 4), round(now - s2, 4), + round(now - start, 4))) + + return box_img + + def calc_draw_distance(self, boxes, cv_image): distance_output = [] c_boxes = [] c_labels = [] - for r in output: - boxes = r.boxes - for box in boxes: + + for box in boxes: + if len(self.depth_images) > 0: cls = box.cls.item() pixels = box.xyxy[0] - if len(self.depth_images) > 0: - distances = np.asarray( - [self.depth_images[i][int(pixels[1]):int(pixels[3]):1, - int(pixels[0]):int(pixels[2]):1] - for i in range(len(self.depth_images))]) - non_zero_filter = distances[distances != 0] - - if len(non_zero_filter) > 0: - obj_dist = np.min(non_zero_filter) - else: - obj_dist = np.inf - - c_boxes.append(torch.tensor(pixels)) - c_labels.append(f"Class: {cls}, Meters: {obj_dist}") - distance_output.append([cls, obj_dist]) - - # print(distance_output) - # self.logerr(distance_output) + + distances = np.asarray( + [self.depth_images[i][int(pixels[1]):int(pixels[3]):1, + int(pixels[0]):int(pixels[2]):1] + for i in range(len(self.depth_images))]) + non_zero_filter = distances[distances != 0] + + if len(non_zero_filter) > 0: + obj_dist = np.min(non_zero_filter) + else: + obj_dist = np.inf + + c_boxes.append(torch.tensor(pixels)) + c_labels.append(f"Class: {cls}, Meters: {obj_dist}") + distance_output.append([cls, obj_dist]) + self.distance_publisher.publish( Float32MultiArray(data=distance_output)) @@ -252,9 +270,6 @@ def predict_ultralytics(self, image): image_np_with_detections = torch.tensor(transposed_image, dtype=torch.uint8) - if 9 in output[0].boxes.cls: - self.process_traffic_lights(output[0], cv_image, image.header) - c_boxes = torch.stack(c_boxes) print(image_np_with_detections.shape, c_boxes.shape, c_labels) box = draw_bounding_boxes(image_np_with_detections, @@ -263,15 +278,13 @@ def predict_ultralytics(self, image): colors='blue', width=3, font_size=12) - # print(box.shape) - np_box_img = np.transpose(box.detach().numpy(), - (1, 2, 0)) + + np_box_img = np.transpose(box.detach().numpy(), (1, 2, 0)) box_img = cv2.cvtColor(np_box_img, cv2.COLOR_BGR2RGB) - return box_img - # return output[0].plot() + return box_img - def process_traffic_lights(self, prediction, cv_image, image_header): + async def process_traffic_lights(self, prediction, cv_image, image_header): indices = (prediction.boxes.cls == 9).nonzero().squeeze().cpu().numpy() indices = np.asarray([indices]) if indices.size == 1 else indices diff --git a/code/requirements.txt b/code/requirements.txt index b4374b74..b9b6155d 100644 --- a/code/requirements.txt +++ b/code/requirements.txt @@ -1,17 +1,18 @@ -dvc==3.30.3 -dvc-gdrive==2.20.0 +dvc==3.42.0 +dvc-gdrive==3.0.1 +networkx==3.1 --extra-index-url https://download.pytorch.org/whl/cu118 -torch==2.1.1 -torchvision==0.16.1 -torchaudio==2.1.1 -pytorch-lightning==2.1.2 -opencv-python==4.8.1.78 -dvclive==3.3.1 +torch==2.1.2 +torchvision==0.16.2 +torchaudio==2.1.2 +pytorch-lightning==2.1.4 +opencv-python==4.9.0.80 +dvclive==3.41.1 ruamel.yaml==0.18.5 scipy==1.10.1 xmltodict==0.13.0 py-trees==2.2.3 numpy==1.23.5 -ultralytics==8.0.220 +ultralytics==8.1.11 scikit-learn>=0.18 -pandas==2.0.0 +pandas==2.0.3