-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSVM_example_block.py
241 lines (189 loc) · 6.76 KB
/
SVM_example_block.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""
This script compare our Algorithm 2 with PDHG and SPDHG algorithms in the following strongly convex example:
Soft margin SVM without bias
min_{x, x0} sum_{j=1,...,m} f[j](b_j * (A[j,:] * x) ) + g(x),
where f[j](r) = max(0 , 1 - r), g(x) = beta/2 norm(x)^2.
with the following data:
"w8a", "rcv1", "real-sim", and "news20" from the LIBSVM datasets website.
If you want to test more SVM data:
add your data under the "./data/" folder.
By default the whole dimension is separated as 32 blocks.
If you want to quickly take a look at the performance of the algorithms:
run the last part of this script: "Plot the result".
References:
[1] A. Chambolle, M. J. Ehrhardt, P. Richtárik, and C.-B. Schönlieb. Stochastic primal-dual hybrid gradient
algorithm with arbitrary sampling and imaging applications. SIAM J. Optim., 28(4):2783–2808, 2018.
[2] T. Goldstein, E. Esser, and R. Baraniuk. Adaptive primal-dual hybrid gradient methods for saddle point
problems. Tech. Report., pages 1–26, 2013. http://arxiv.org/pdf/1305.0546v1.pdf.
"""
from __future__ import division, print_function
import numpy as np
import math
from scipy import sparse as sp
import sys
from argParse import argParser_block
from solver_block.original_alg2 import original_alg2
from solver_block.spdhg import spdhg
from solver_block.pdhg import pdhg
from solver_block.spdc import spdc
from sklearn.datasets import load_svmlight_file
# Read Parameters
num_blk, data_name, num_epoch = argParser_block()
if data_name is None:
data_name = "rcv1"
num_blk = int(num_blk)
num_epoch = int(num_epoch)
# Import Data
# c, b, A, beta
X_train, y_train = load_svmlight_file("data/" + data_name)
m = y_train.size
A = sp.diags(y_train).dot(X_train)
At = A.transpose()
c = np.ones(m)
beta = 0.0001 * m
m, d = A.shape
# Define objective functions
def primal_obj_func(x):
r = A.dot(x)
return np.maximum(0, 1 - r).dot(c) + (beta / 2) * x.dot(x)
def dual_obj_func(y):
if (y >= -c).all() and (y <= 0).all():
z = -At.dot(y)
return - y.sum() - (1 / 2 / beta) * z.dot(z)
else:
return - math.inf
# fix a seed
np.random.seed(0)
# fix the initial point and iterations
x0 = np.zeros(d)
niter = num_blk*num_epoch
# partition into blk_x blocks
blk_x = num_blk
bat_size_x = d // blk_x + 1
Ablk_x = []
index_x = []
for k in range(blk_x):
mask = range((k % blk_x) * bat_size_x, min((k % blk_x + 1) * bat_size_x, d))
index_x.append(mask)
Ablk_x.append(A[:, mask])
Atblk_x = [Ablk_x[i].transpose() for i in range(blk_x)]
# partition into blk_x blocks
blk_r = num_blk
bat_size_r = m // blk_r + 1
Ablk_r = []
index_r = []
for k in range(blk_r):
mask = range((k % blk_r) * bat_size_r, min((k % blk_r + 1) * bat_size_r, m))
index_r.append(mask)
Ablk_r.append(A[mask, :])
Atblk_r = [Ablk_r[i].transpose() for i in range(blk_r)]
# Define the solution set
Sol = dict()
# Define proximal operators
def proximal_x(x, sigma):
return x / (beta * sigma + 1)
def proximal_r(r, sigma):
return np.minimum(np.maximum(r, 1), r + sigma)
def proximal_r_star(r, sigma):
return np.minimum(np.maximum(r - sigma, -1), 0)
"""
Run our Algorithm 2
"""
if_average = 1
tau0 = 1 / blk_x # 1/(blk_x*blk_r)
rho0 = 5 / sp.linalg.norm(A) # penalty parameter for r , 8 for w8a
sigma = 5 / sp.linalg.norm(A) # penalty parameter for x, 8 for w8a
c_eta = 1 # 1 for w8a
c_tau = 2 / tau0 # 2 for w8a
if data_name == "w8a":
rho0 = 8 / sp.linalg.norm(A) # penalty parameter for r
sigma = 8 / sp.linalg.norm(A) # penalty parameter for x
c_eta = 1
c_tau = 2 / tau0
Sol["original_alg2"] = original_alg2(x0, proximal_x, proximal_r_star, A, Ablk_x, Atblk_x, index_x, if_average,
niter,
primal_obj_func=primal_obj_func, dual_obj_func=dual_obj_func,
rho0=rho0, tau0=tau0, sigma=sigma, c_tau=c_tau, c_eta=c_eta, verbose=1,
print_dist=int(max(niter / 20, 1)))
"""
Run PDHG algorithm
"""
gamma = 0.99
tau = gamma / sp.linalg.norm(A)
sigma = 0.01 # [gamma/sp.linalg.norm(A[i,:]) for i in range(0,m)]
if data_name == "w8a":
sigma = 0.005
if_average = 1
Sol["pdhg"] = pdhg(x0, proximal_x, proximal_r_star, A, tau, sigma, if_average, num_epoch,
primal_obj_func=primal_obj_func, dual_obj_func=dual_obj_func,
verbose=1, print_dist=int(max(num_epoch / 20, 1)))
"""
Run SPDHG algorithm
"""
def proximal_r_star(mask, r, sigma):
return np.minimum(np.maximum(r - sigma, -1), 0)
gamma1 = 5
gamma2 = 5
tau = gamma1 / sp.linalg.norm(A)
sigma = gamma2 / sp.linalg.norm(A)
if_average = 1
theta = 1
Sol["spdhg"] = spdhg(x0, proximal_x, proximal_r_star, A, Ablk_r, Atblk_r, index_r, tau, sigma, if_average, niter,
primal_obj_func=primal_obj_func, dual_obj_func=dual_obj_func,
theta=theta, verbose=1, print_dist=int(max(niter / 20, 1)))
"""
Save data
"""
import pickle
data = dict(dim_dual=m, dim_primal=d, blk_x=blk_x, blk_r=blk_r)
# calculate the initial primal value
x0 = np.zeros(d)
y0 = np.zeros(m)
primal_obj_x0 = primal_obj_func(x0)
dual_obj_y0 = dual_obj_func(y0)
gap0 = primal_obj_x0 - dual_obj_y0
Sol["spdhg"]["gap"] = [gap0] + Sol["spdhg"]["gap"]
Sol["pdhg"]["gap"] = [gap0] + Sol["pdhg"]["gap"]
Sol["original_alg2"]["gap"] = [gap0] + Sol["original_alg2"]["gap"]
data["sol"] = Sol
pickle.dump(data, open("result/svm/svm_" + data_name, "wb"))
"""
Plot the result
"""
import pickle
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import rc
matplotlib.use('TkAgg')
rc('text', usetex=True)
# create the figure
fig_svm = plt.figure()
markersize = 8
mark_num = 10
# load the data
if 'data_name' not in locals():
data_name = "rcv1"
data = pickle.load(open("result/svm/svm_" + data_name, "rb"))
m = data["dim_dual"]
d = data["dim_primal"]
blk_x = data["blk_x"]
blk_r = data["blk_r"]
total_iter = len(data["sol"]["original_alg2"]["gap"])
iters = np.array(range(0, total_iter))
num_epoch = int(total_iter / blk_r)
gap = np.array(data["sol"]["original_alg2"]["gap"]) / m
plt.semilogy(iters / blk_x, gap, 'C1-', marker='o', markevery=int(total_iter / mark_num),
markersize=markersize, label=r'Original Algorithm 2')
gap = np.array(data["sol"]["spdhg"]["gap"]) / m
plt.semilogy(iters / blk_x, gap, 'C3-', marker='v', markevery=int(total_iter / mark_num),
markersize=markersize, label=r'SPDHG')
gap = np.array(data["sol"]["pdhg"]["gap"]) / m
mask = np.array(range(num_epoch))
plt.semilogy(mask, gap[mask], 'C4-', marker='*', markevery=int(num_epoch / mark_num),
markersize=markersize, label=r'PDHG')
plt.title("SVM - " + data_name + ": m = " + str(m) + ", n = " + str(d))
plt.xlabel("Epochs")
plt.ylabel("Duality Gap")
plt.legend()
plt.show()