-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathRoboschoolInvertedPendulum_HSPGA.py
296 lines (223 loc) · 10.5 KB
/
RoboschoolInvertedPendulum_HSPGA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""@package RoboschoolInvertedPendulum_HSPGA
This package implements the HSPGA algorithm for RoboschoolInvertedPendulum-v1 environment.
Copyright (c) 2020 Nhan H. Pham, Department of Statistics and Operations Research, University of North Carolina at Chapel Hill
Copyright (c) 2020 Lam M. Nguyen, IBM Research, Thomas J. Watson Research Center
Yorktown Heights
Copyright (c) 2020 Dzung T. Phan, IBM Research, Thomas J. Watson Research Center
Yorktown Heights
Copyright (c) 2020 Phuong Ha Nguyen, Department of Electrical and Computer Engineering, University of Connecticut
Copyright (c) 2020 Marten van Dijk, Department of Electrical and Computer Engineering, University of Connecticut
Copyright (c) 2020 Quoc Tran-Dinh, Department of Statistics and Operations Research, University of North Carolina at Chapel Hill
All rights reserved.
If you found this helpful and are using it within our software please cite the following publication:
* N. H. Pham, L. M. Nguyen, D. T. Phan, P. H. Nguyen, M. van Dijk and Q. Tran-Dinh, **A Hybrid Stochastic Policy Gradient Algorithm for Reinforcement Learning**, The 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020), Palermo, Italy, 2020.
"""
from rllab.envs.gym_env import GymEnv
from rllab.policies.gaussian_mlp_policy import GaussianMLPPolicy
from rllab.envs.normalized_env import normalize
import numpy as np
import theano
import theano.tensor as TT
from rllab.sampler import parallel_sampler
from lasagne.updates import adam
import pandas as pd
import os
import roboschool
from utils.utils import *
# whether to load existing policy
load_policy=True
# whether to learn standard deviation of Gaussian policy
learn_std = False
# snapshot batchsize
snap_bs = 50
# effective length of a trajectory
traj_length = 1000
# minibatch size in the inner loop
m_bs = 5
# number of trajectories for evaluation
num_eval_traj = 50
# discount factor
discount = 0.999
# stepsizes
learning_rate = 1e-3
beta = 0.99
# number of inner iterations
max_inner = 3
# total number of trajectories
max_num_traj = 10000
# normalize() makes sure that the actions for the environment lies
# within the range [-1, 1] (only works for environments with continuous actions)
env = normalize(GymEnv("RoboschoolInvertedPendulum-v1"))
# initialize a neural network policy with a single hidden layer of 8 hidden units
policy = GaussianMLPPolicy(env.spec, hidden_sizes=(16,),learn_std=learn_std)
prev_policy = GaussianMLPPolicy(env.spec, hidden_sizes=(16,),learn_std=learn_std)
# policy.distribution returns a distribution object under rllab.distributions. It contains many utilities for computing
# distribution-related quantities, given the computed dist_info_vars. Below we use dist.log_likelihood_sym to compute
# the symbolic log-likelihood. For this example, the corresponding distribution is an instance of the class
# rllab.distributions.DiagonalGaussian
dist = policy.distribution
prev_dist = prev_policy.distribution
# create placeholders
observations_var = env.observation_space.new_tensor_variable(
'observations',
# It should have 1 extra dimension since we want to represent a list of observations
extra_dims=1
)
actions_var = env.action_space.new_tensor_variable(
'actions',
extra_dims=1
)
d_rewards_var = TT.vector('d_rewards')
importance_weights_var = TT.vector('importance_weight')
# policy.dist_info_sym returns a dictionary, whose values are symbolic expressions for quantities related to the
# distribution of the actions. For a Gaussian policy, it contains the mean and (log) standard deviation.
dist_info_vars = policy.dist_info_sym(observations_var)
prev_dist_info_vars = prev_policy.dist_info_sym(observations_var)
params = policy.get_params(trainable=True)
prev_params = prev_policy.get_params(trainable=True)
importance_weights = dist.likelihood_ratio_sym(actions_var,dist_info_vars,prev_dist_info_vars)
# create surrogate losses
surr_on1 = -TT.mean( dist.log_likelihood_sym(actions_var,dist_info_vars)*d_rewards_var)
surr_on2 = TT.mean(prev_dist.log_likelihood_sym(actions_var,prev_dist_info_vars)*d_rewards_var*importance_weights_var)
grad = theano.grad(surr_on1, params)
grad_diff = [sum(x) for x in zip(theano.grad(surr_on1,params),theano.grad(surr_on2,prev_params))]
print("Parameters shape")
for i in range(len(params)):
print(params[i].shape.eval())
eval_grad1 = TT.matrix('eval_grad0',dtype=grad[0].dtype)
eval_grad2 = TT.vector('eval_grad1',dtype=grad[1].dtype)
eval_grad3 = TT.col('eval_grad2',dtype=grad[2].dtype)
eval_grad4 = TT.TensorType(dtype=grad[3].dtype, broadcastable=params[3].broadcastable)('eval_grad3')
if learn_std:
eval_grad5 = TT.TensorType(dtype=grad[4].dtype, broadcastable=params[4].broadcastable)('eval_grad4')
f_compute_grad = theano.function(
inputs = [observations_var, actions_var, d_rewards_var],
outputs = grad
)
if learn_std:
f_update = theano.function(
inputs = [eval_grad1, eval_grad2, eval_grad3, eval_grad4, eval_grad5],
outputs = None,
updates = adam([eval_grad1, eval_grad2, eval_grad3, eval_grad4, eval_grad5], params, learning_rate=learning_rate)
)
else:
f_update = theano.function(
inputs = [eval_grad1, eval_grad2, eval_grad3, eval_grad4],
outputs = None,
updates = adam([eval_grad1, eval_grad2, eval_grad3, eval_grad4], params, learning_rate=learning_rate)
)
f_importance_weights = theano.function(
inputs = [observations_var, actions_var],
outputs = importance_weights
)
f_compute_grad_diff = theano.function(
inputs=[observations_var, actions_var, d_rewards_var, importance_weights_var],
outputs=grad_diff,
)
# log directory
log_dir = "log_file/InvertPendulum/HSPGA"+"_lr" + str(learning_rate)
# check if directory exists, if not, create directory
if not os.path.exists( log_dir ):
os.makedirs( log_dir )
# setup parallel sampler
parallel_sampler.populate_task(env, policy)
parallel_sampler.initialize(8)
# initialize log Data Frame
avg_return_data = pd.DataFrame()
# loop for 10 runs
for k in range(10):
print("Run #{}".format(k))
# load policy
if learn_std:
file_name = 'roboschool_inv_pendulum_policy' + '.txt'
else:
file_name = 'roboschool_inv_pendulum_policy_novar' + '.txt'
if load_policy:
policy.set_param_values(np.loadtxt('save_model/' + file_name), trainable=True)
else:
np.savetxt("save_model/" + file_name,policy.get_param_values(trainable=True))
load_policy = True
# intial setup
avg_return = list()
eps_list = []
max_rewards = -np.inf
num_traj = 0
# loop till done
while num_traj<=max_num_traj:
# sample snapshot batch of trajectories
paths = parallel_sampler.sample_paths_on_trajectories(policy.get_param_values(),snap_bs,traj_length,show_bar=False)
paths = paths[:snap_bs]
# extract information
observations, actions, d_rewards = extract_path(paths, discount)
# compute policy gradient
# compute policy gradient
v_est = compute_snapshot_grad_est(f_compute_grad, observations, actions, d_rewards)
# perform update
if learn_std:
f_update(v_est[0],v_est[1],v_est[2],v_est[3],v_est[4])
else:
f_update(v_est[0],v_est[1],v_est[2],v_est[3])
# sample trajectories for evaluating current policy
tmp_paths = parallel_sampler.sample_paths_on_trajectories(policy.get_param_values(),num_eval_traj,show_bar=False)
avg_return.append(np.mean([sum(p["rewards"]) for p in tmp_paths]))
eps_list.append(num_traj)
print(str(num_traj)+' Average Return:', avg_return[-1])
# update best policy
if avg_return[-1] > max_rewards:
max_rewards = avg_return[-1]
best_policy_ = policy.get_param_values(trainable=True)
# update number of trajectories sampled
num_traj += snap_bs
# inner loop
for _ in range(max_inner):
# sample trajectories
sub_paths = parallel_sampler.sample_paths_on_trajectories(policy.get_param_values(),2*m_bs,traj_length,show_bar=False)
sub_paths = sub_paths[:2*m_bs]
# update number of trajectories sampled
num_traj += 2*m_bs
sub_paths_1 = sub_paths[0:m_bs-1]
sub_paths_2 = sub_paths[m_bs:2*m_bs-1]
# extract information
sub_observations_1, sub_actions_1, sub_d_rewards_1 = extract_path(sub_paths_1, discount)
sub_observations_2, sub_actions_2, sub_d_rewards_2 = extract_path(sub_paths_2, discount)
path_info_1 = {
'obs': sub_observations_1,
'acts': sub_actions_1,
'rws': sub_d_rewards_1,
}
path_info_2 = {
'obs': sub_observations_2,
'acts': sub_actions_2,
'rws': sub_d_rewards_2,
}
# compute Hybrid SPG estimator
v_est = compute_hybrid_spg_est(f_compute_grad,f_compute_grad_diff,f_importance_weights,path_info_1,path_info_2,beta,v_est)
# perform update
prev_policy.set_param_values(policy.get_param_values(trainable=True), trainable=True)
if learn_std:
f_update(v_est[0],v_est[1],v_est[2],v_est[3],v_est[4])
else:
f_update(v_est[0],v_est[1],v_est[2],v_est[3])
# check if we are done
if num_traj >= max_num_traj:
tmp_paths = parallel_sampler.sample_paths_on_trajectories(policy.get_param_values(),num_eval_traj,show_bar=False)
avg_return.append(np.mean([sum(p["rewards"]) for p in tmp_paths]))
eps_list.append(num_traj)
print(str(num_traj)+' Average Return:', avg_return[-1])
# update best policy
if avg_return[-1] > max_rewards:
max_rewards = avg_return[-1]
best_policy_ = policy.get_param_values(trainable=True)
break
# log data
if k==0:
avg_return_data["Episodes"]=eps_list
avg_return_data["MeanRewards_"+str(k)]=avg_return
avg_return_df = pd.DataFrame()
avg_return_df["Episodes"]=eps_list
avg_return_df["MeanRewards"]=avg_return
avg_return_df.to_csv(os.path.join(log_dir,"avg_return_" + str(k) + ".csv"), index=False)
np.savetxt(os.path.join(log_dir,"final_policy_"+str(k) + ".txt"),policy.get_param_values(trainable=True))
np.savetxt(os.path.join(log_dir,"best_policy_"+str(k) + ".txt"),best_policy_)
print(avg_return_data)
avg_return_data.to_csv(os.path.join(log_dir,"avg_return_total.csv"),index=False)