forked from triton-inference-server/python_backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
square_client.py
122 lines (104 loc) · 4.84 KB
/
square_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import sys
from functools import partial
import numpy as np
import queue
from tritonclient.utils import *
import tritonclient.grpc as grpcclient
class UserData:
def __init__(self):
self._completed_requests = queue.Queue()
def callback(user_data, result, error):
if error:
user_data._completed_requests.put(error)
else:
user_data._completed_requests.put(result)
# This client sends a 4 requests to the model with the
# input as: [4], [2], [0] and [1] respectively. In
# compliance with the behavior of square_int32 model,
# it will expect the 4 responses for the 1st request
# each with output [4], 2 responses for 2nd request
# each with output [2], no response for the 3rd request
# and finally 1 response for the 4th request with output
# [1]
model_name = "square_int32"
in_values = [4, 2, 0, 1]
inputs = [grpcclient.InferInput("IN", [1], np_to_triton_dtype(np.int32))]
outputs = [grpcclient.InferRequestedOutput("OUT")]
user_data = UserData()
with grpcclient.InferenceServerClient(url="localhost:8001",
verbose=True) as triton_client:
# Establish stream
triton_client.start_stream(callback=partial(callback, user_data))
# Send specified many requests in parallel
for i in range(len(in_values)):
in_data = np.array([in_values[i]], dtype=np.int32)
inputs[0].set_data_from_numpy(in_data)
triton_client.async_stream_infer(model_name=model_name,
inputs=inputs,
request_id=str(i),
outputs=outputs)
# Retrieve results...
recv_count = 0
expected_count = sum(in_values)
result_dict = {}
while recv_count < expected_count:
data_item = user_data._completed_requests.get()
if type(data_item) == InferenceServerException:
raise data_item
else:
this_id = data_item.get_response().id
if this_id not in result_dict.keys():
result_dict[this_id] = []
result_dict[this_id].append((recv_count, data_item))
recv_count += 1
# Validate results...
for i in range(len(in_values)):
this_id = str(i)
if in_values[i] != 0 and this_id not in result_dict.keys():
print("response for request id {} not received".format(this_id))
sys.exit(1)
elif in_values[i] == 0 and this_id in result_dict.keys():
print("received unexpected response for request id {}".format(
this_id))
sys.exit(1)
if in_values[i] != 0:
if len(result_dict[this_id]) != in_values[i]:
print("expected {} many responses for request id {}, got {}".
format(in_values[i], this_id, result_dict[this_id]))
sys.exit(1)
if in_values[i] != 0:
result_list = result_dict[this_id]
expected_data = np.array([in_values[i]], dtype=np.int32)
for j in range(len(result_list)):
this_data = result_list[j][1].as_numpy('OUT')
if not np.array_equal(expected_data, this_data):
print("incorrect data: expected {}, got {}".format(
expected_data, this_data))
sys.exit(1)
print('PASS: square_int32')
sys.exit(0)