diff --git a/bib/biblio.txt b/bib/biblio.txt index a6d5f7c..73aa214 100644 --- a/bib/biblio.txt +++ b/bib/biblio.txt @@ -48,76 +48,88 @@ 25. Amirkulova, D. B. & White, A. D. Recent advances in maximum entropy biasing techniques for molecular dynamics. Molecular Simulation 45, 1285–1294 (2019). -26. Promoting transparency and reproducibility in enhanced molecular simulations. Nature methods 16, 670–673 (2019). +26. Chakraborty, M., Xu, J. & White, A. D. Is preservation of symmetry necessary for coarse-graining? Physical Chemistry Chemical Physics 22, 14998–15005 (2020). -27. Chakraborty, M., Xu, J. & White, A. D. Is preservation of symmetry necessary for coarse-graining? Physical Chemistry Chemical Physics 22, 14998–15005 (2020). +27. Chakraborty, M., Ziatdinov, M., Dyck, O., Jesse, S., White, A. D. & Kalinin, S. V. Reconstruction of the interatomic forces from dynamic scanning transmission electron microscopy data. Journal of Applied Physics 127, (2020). -28. Chakraborty, M., Ziatdinov, M., Dyck, O., Jesse, S., White, A. D. & Kalinin, S. V. Reconstruction of the interatomic forces from dynamic scanning transmission electron microscopy data. Journal of Applied Physics 127, (2020). +28. Li, Z., Wellawatte, G. P., Chakraborty, M., Gandhi, H. A., Xu, C. & White, A. D. Graph neural network based coarse-grained mapping prediction. Chemical science 11, 9524–9531 (2020). -29. Li, Z., Wellawatte, G. P., Chakraborty, M., Gandhi, H. A., Xu, C. & White, A. D. Graph neural network based coarse-grained mapping prediction. Chemical science 11, 9524–9531 (2020). +29. Tang, J., Zhang, Y., Luehmann, A. & White, A. Augmented reality improved learning of lower-level students by empowering their participation in collaborative activities. (2020). -30. Tang, J., Zhang, Y., Luehmann, A. & White, A. Augmented reality improved learning of lower-level students by empowering their participation in collaborative activities. (2020). +30. Barrett, R., Chakraborty, M., Amirkulova, D., Gandhi, H., Wellawatte, G. & White, A. Hoomd-tf: Gpu-accelerated, online machine learning in the hoomd-blue molecular dynamics engine. Journal of Open Source Software 5, (2020). -31. Barrett, R., Chakraborty, M., Amirkulova, D., Gandhi, H., Wellawatte, G. & White, A. Hoomd-tf: Gpu-accelerated, online machine learning in the hoomd-blue molecular dynamics engine. Journal of Open Source Software 5, (2020). +31. Amirkulova, D. B., Chakraborty, M. & White, A. D. Experimentally consistent simulation of aβ21–30 peptides with a minimal NMR bias. The Journal of Physical Chemistry B 124, 8266–8277 (2020). -32. Amirkulova, D. B., Chakraborty, M. & White, A. D. Experimentally consistent simulation of aβ21–30 peptides with a minimal NMR bias. The Journal of Physical Chemistry B 124, 8266–8277 (2020). +32. Gandhi, H. A., Jakymiw, S., Barrett, R., Mahaseth, H. & White, A. D. Real-time interactive simulation and visualization of organic molecules. (2020). -33. Gandhi, H. A., Jakymiw, S., Barrett, R., Mahaseth, H. & White, A. D. Real-time interactive simulation and visualization of organic molecules. (2020). +33. Barrett, R. & White, A. D. Investigating active learning and meta-learning for iterative peptide design. Journal of chemical information and modeling 61, 95–105 (2020). -34. Barrett, R. & White, A. D. Investigating active learning and meta-learning for iterative peptide design. Journal of chemical information and modeling 61, 95–105 (2020). +34. Barrett, R., Ansari, M., Ghoshal, G. & White, A. D. Simulation-based inference with approximately correct parameters via maximum entropy. Machine Learning: Science and Technology 3, 025006 (2022). -35. Barrett, R., Ansari, M., Ghoshal, G. & White, A. D. Simulation-based inference with approximately correct parameters via maximum entropy. Machine Learning: Science and Technology 3, 025006 (2022). +35. Yang, Z., Chakraborty, M. & White, A. D. Predicting chemical shifts with graph neural networks. Chemical Science (2021). -36. Yang, Z., Chakraborty, M. & White, A. D. Predicting chemical shifts with graph neural networks. Chemical Science (2021). +36. Gandhi, H. A. & White, A. D. City-wide modeling of vehicle-to-grid economics to understand effects of battery performance. ACS Sustainable Chemistry & Engineering 9, 14975–14985 (2021). -37. Gandhi, H. A. & White, A. D. City-wide modeling of vehicle-to-grid economics to understand effects of battery performance. ACS Sustainable Chemistry & Engineering 9, 14975–14985 (2021). +37. Wellawatte, G. P., Seshadri, A. & White, A. D. Model agnostic generation of counterfactual explanations for molecules. Chemical science 13, 3697–3705 (2022). -38. Wellawatte, G. P., Seshadri, A. & White, A. D. Model agnostic generation of counterfactual explanations for molecules. Chemical science 13, 3697–3705 (2022). +38. Ansari, M., Gandhi, H. A., Foster, D. G. & White, A. D. Iterative symbolic regression for learning transport equations. AIChE Journal 68, e17695 (2022). -39. Ansari, M., Gandhi, H. A., Foster, D. G. & White, A. D. Iterative symbolic regression for learning transport equations. AIChE Journal 68, e17695 (2022). +39. Hocky, G. M. & White, A. D. Natural language processing models that automate programming will transform chemistry research and teaching. Digital discovery 1, 79–83 (2022). -40. Hocky, G. M. & White, A. D. Natural language processing models that automate programming will transform chemistry research and teaching. Digital discovery 1, 79–83 (2022). +40. Ansari, M., Soriano-Paños, D., Ghoshal, G. & White, A. D. Inferring spatial source of disease outbreaks using maximum entropy. Physical Review E 106, 014306 (2022). -41. Ansari, M., Soriano-Paños, D., Ghoshal, G. & White, A. D. Inferring spatial source of disease outbreaks using maximum entropy. Physical Review E 106, 014306 (2022). +41. Hamsici, S., White, A. D. & Acar, H. Peptide framework for screening the effects of amino acids on assembly. Science Advances 8, eabj0305 (2022). -42. Hamsici, S., White, A. D. & Acar, H. Peptide framework for screening the effects of amino acids on assembly. Science Advances 8, eabj0305 (2022). +42. Krenn, M., Ai, Q., Barthel, S., Carson, N., Frei, A., Frey, N. C., Friederich, P., Gaudin, T., Gayle, A. A., Jablonka, K. M., et al. SELFIES and the future of molecular string representations. Patterns 3, (2022). -43. Krenn, M., Ai, Q., Barthel, S., Carson, N., Frei, A., Frey, N. C., Friederich, P., Gaudin, T., Gayle, A. A., Jablonka, K. M., et al. SELFIES and the future of molecular string representations. Patterns 3, (2022). +43. Cox, S. & White, A. D. Symmetric molecular dynamics. Journal of Chemical Theory and Computation 18, 4077–4081 (2022). -44. Cox, S. & White, A. D. Symmetric molecular dynamics. Journal of Chemical Theory and Computation 18, 4077–4081 (2022). +44. Kalinin, S. V., Ziatdinov, M., Sumpter, B. G. & White, A. D. Physics is the new data. arXiv preprint arXiv:2204.05095 (2022). -45. Kalinin, S. V., Ziatdinov, M., Sumpter, B. G. & White, A. D. Physics is the new data. arXiv preprint arXiv:2204.05095 (2022). +45. Ansari, M. & White, A. D. Serverless prediction of peptide properties with recurrent neural networks. Journal of Chemical Information and Modeling 63, 2546–2553 (2023). -46. Ansari, M. & White, A. D. Serverless prediction of peptide properties with recurrent neural networks. Journal of Chemical Information and Modeling 63, 2546–2553 (2023). +46. Zhu, W., Luo, J. & White, A. D. Federated learning of molecular properties with graph neural networks in a heterogeneous setting. Patterns 100521 (2022). -47. Zhu, W., Luo, J. & White, A. D. Federated learning of molecular properties with graph neural networks in a heterogeneous setting. Patterns 100521 (2022). +47. White, A. D. Deep learning for molecules and materials. Living journal of computational molecular science 3, (2022). -48. White, A. D. Deep learning for molecules and materials. Living Journal of Computational Molecular Science 3, 1499–1499 (2021). +48. Yang, Z., Milas, K. A. & White, A. D. Now what sequence? Pre-trained ensembles for bayesian optimization of protein sequences. bioRxiv 2022–08 (2022). -49. Yang, Z., Milas, K. A. & White, A. D. Now what sequence? Pre-trained ensembles for bayesian optimization of protein sequences. bioRxiv 2022–08 (2022). +49. Gandhi, H. A. & White, A. D. Explaining molecular properties with natural language. (2022). -50. Gandhi, H. A. & White, A. D. Explaining molecular properties with natural language. (2022). +50. Seshadri, A., Gandhi, H. A., Wellawatte, G. P. & White, A. D. Why does that molecule smell? (2022). -51. Seshadri, A., Gandhi, H. A., Wellawatte, G. P. & White, A. D. Why does that molecule smell? (2022). +51. Wellawatte, G. P., Gandhi, H. A., Seshadri, A. & White, A. D. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation 19, 2149–2160 (2023). -52. Wellawatte, G. P., Gandhi, H. A., Seshadri, A. & White, A. D. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation 19, 2149–2160 (2023). +52. White, A. D., Hocky, G. M., Gandhi, H. A., Ansari, M., Cox, S., Wellawatte, G. P., Sasmal, S., Yang, Z., Liu, K., Singh, Y., et al. Assessment of chemistry knowledge in large language models that generate code. Digital Discovery 2, 368–376 (2023). -53. White, A. D., Hocky, G. M., Gandhi, H. A., Ansari, M., Cox, S., Wellawatte, G. P., Sasmal, S., Yang, Z., Liu, K., Singh, Y., et al. Assessment of chemistry knowledge in large language models that generate code. Digital Discovery 2, 368–376 (2023). +53. Wellawatte, G. P., Hocky, G. M. & White, A. D. Neural potentials of proteins extrapolate beyond training data. The Journal of Chemical Physics 159, (2023). -54. Wellawatte, G. P., Hocky, G. M. & White, A. D. Neural potentials of proteins extrapolate beyond training data. (2023). +54. Bran, A. M., Cox, S., Schilter, O., Baldassari, C., White, A. D. & Schwaller, P. ChemCrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023). -55. Bran, A. M., Cox, S., White, A. D. & Schwaller, P. ChemCrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023). +55. Ramos, M. C., Michtavy, S. S., Porosoff, M. D. & White, A. D. Bayesian optimization of catalysts with in-context learning. arXiv preprint arXiv:2304.05341 (2023). -56. Ramos, M. C., Michtavy, S. S., Porosoff, M. D. & White, A. D. Bayesian optimization of catalysts with in-context learning. arXiv preprint arXiv:2304.05341 (2023). +56. Medina, J. & White, A. D. Bloom filters for molecules. Journal of Cheminformatics 15, 95 (2023). -57. Medina, J. & White, A. D. Bloom filters for molecules. arXiv preprint arXiv:2304.05386 (2023). +57. Campbell, Q. L., Herington, J. & White, A. D. Censoring chemical data to mitigate dual use risk. arXiv preprint arXiv:2304.10510 (2023). -58. Lo, A., Pollice, R., Nigam, A., White, A. D., Krenn, M. & Aspuru-Guzik, A. Recent advances in the self-referencing embedding strings (SELFIES) library. arXiv preprint arXiv:2302.03620 (2023). +58. Medina, J. & White, A. D. Active learning in symbolic regression performance with physical constraints. arXiv preprint arXiv:2305.10379 (2023). -59. Campbell, Q. L., Herington, J. & White, A. D. Censoring chemical data to mitigate dual use risk. arXiv preprint arXiv:2304.10510 (2023). +59. Ansari, M. & White, A. D. Learning peptide properties with positive examples only. Digital Discovery 3, 977–986 (2024). -60. Medina, J. & White, A. D. Active learning in symbolic regression performance with physical constraints. arXiv preprint arXiv:2305.10379 (2023). +60. White, A. D. The future of chemistry is language. Nature Reviews Chemistry 7, 457–458 (2023). -61. Ansari, M. & White, A. D. Learning peptide properties with positive examples only. bioRxiv 2023–06 (2023). +61. Ramos, M. C. & White, A. D. Predicting small molecules solubility on endpoint devices using deep ensemble neural networks. Digital Discovery 3, 786–795 (2024). -62. White, A. D. The future of chemistry is language. Nature Reviews Chemistry 1–2 (2023). +62. Jablonka, K. M., Ai, Q., Al-Feghali, A., Badhwar, S., Bocarsly, J. D., Bran, A. M., Bringuier, S., Brinson, L. C., Choudhary, K., Circi, D., et al. 14 examples of how LLMs can transform materials science and chemistry: A reflection on a large language model hackathon. Digital Discovery 2, 1233–1250 (2023). + +63. Promoting transparency and reproducibility in enhanced molecular simulations. Nature methods 16, 670–673 (2019). + +64. Lo, A., Pollice, R., Nigam, A., White, A. D., Krenn, M. & Aspuru-Guzik, A. Recent advances in the self-referencing embedded strings (SELFIES) library. Digital Discovery 2, 897–908 (2023). + +65. Lála, J., O’Donoghue, O., Shtedritski, A., Cox, S., Rodriques, S. G. & White, A. D. Paperqa: Retrieval-augmented generative agent for scientific research. arXiv preprint arXiv:2312.07559 (2023). + +66. Cox, S., Hammerling, M., Lála, J., Laurent, J., Rodriques, S., Rubashkin, M. & White, A. WikiCrow: Automating synthesis of human scientific knowledge (2024). + +67. Ramos, M. C., Collison, C. J. & White, A. D. A review of large language models and autonomous agents in chemistry. arXiv preprint arXiv:2407.01603 (2024). + +68. Laurent, J. M., Janizek, J. D., Ruzo, M., Hinks, M. M., Hammerling, M. J., Narayanan, S., Ponnapati, M., White, A. D. & Rodriques, S. G. LAB-bench: Measuring capabilities of language models for biology research. arXiv preprint arXiv:2407.10362 (2024). diff --git a/bib/data.yml b/bib/data.yml index 9b5e582..704314d 100644 --- a/bib/data.yml +++ b/bib/data.yml @@ -1,3 +1,66 @@ +labbench: + key: + - laurent + - lab-bench + - 2024 + tweet: https://x.com/andrewwhite01/status/1813235301973921873 + link: https://doi.org/10.48550/arXiv.2407.10362 + pdf: https://arxiv.org/pdf/2407.10362 + code: https://huggingface.co/datasets/futurehouse/lab-bench + +wikicrow: + key: + - cox + - hammerling + - wikicrow + - knowledge + - 2024 + tweet: https://x.com/SGRodriques/status/1733193844110557432 + link: https://www.futurehouse.org/wikicrow + code: https://github.com/Future-House/WikiCrow + +llmhackathon2023: + key: + - llm + - hackathon + - 2023 + tweet: https://x.com/kmjablonka/status/1668506349465116673 + link: https://pubs.rsc.org/en/content/articlelanding/2023/dd/d3dd00113j + pdf: https://pubs.rsc.org/en/content/articlepdf/2023/dd/d3dd00113j + +llmreview: + key: + - ramos + - collison + - autonomous + - review + - 2024 + tweet: https://x.com/andrewwhite01/status/1808505284291375380 + link: https://doi.org/10.48550/arXiv.2407.01603 + pdf: https://arxiv.org/pdf/2407.01603 + code: https://github.com/ur-whitelab/LLMs-in-science + +deepensemble: + key: + - ramos + - solubility + - ensemble + - 2024 + tweet: https://x.com/andrewwhite01/status/1780944395656744962 + link: https://pubs.rsc.org/en/content/articlelanding/2024/dd/d3dd00217a + pdf: https://pubs.rsc.org/en/content/articlepdf/2024/dd/d3dd00217a + app: https://mol.dev/ + code: https://github.com/ur-whitelab/mol.dev + +paperqa: + key: + - paperqa + - 2023 + tweet: + link: https://doi.org/10.48550/arXiv.2312.07559 + pdf: https://arxiv.org/pdf/2312.07559 + code: https://github.com/Future-House/paper-qa + alcfd: key: - ansari @@ -20,7 +83,6 @@ serverless: app: https://peptide.bio code: https://github.com/ur-whitelab/peptide-dashboard - maxent: key: - ansari @@ -311,7 +373,7 @@ nnff: - 2023 - extrapolate tweet: https://twitter.com/andrewwhite01/status/1605937402509492225 - link: https://chemrxiv.org/engage/chemrxiv/article-details/63a3bfac81e4ba77ec56166a + link: https://pubs.aip.org/aip/jcp/article/159/8/085103/2908350 pdf: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/63a3bfac81e4ba77ec56166a/original/neural-potentials-of-proteins-extrapolate-beyond-training-data.pdf alsr: @@ -340,8 +402,8 @@ chemcrow: - cox - 2023 tweet: https://twitter.com/andrewwhite01/status/1670794000398184451 - link: https://arxiv.org/abs/2304.05376 - pdf: https://arxiv.org/pdf/2304.05376 + link: https://www.nature.com/articles/s42256-024-00832-8 + pdf: https://www.nature.com/articles/s42256-024-00832-8.pdf code: https://github.com/ur-whitelab/chemcrow-public/ outputs: https://github.com/ur-whitelab/chemcrow-runs @@ -355,15 +417,14 @@ chemfuture: link: https://www.nature.com/articles/s41570-023-00502-0 pdf: https://www.nature.com/articles/s41570-023-00502-0.pdf - bloom: key: - bloom - 2023 - medina tweet: https://twitter.com/andrewwhite01/status/1646171800940969984 - link: https://arxiv.org/abs/2304.05386 - pdf: https://arxiv.org/pdf/2304.05386.pdf + link: https://link.springer.com/article/10.1186/s13321-023-00765-1%20 + pdf: https://link.springer.com/content/pdf/10.1186/s13321-023-00765-1.pdf code: https://github.com/whitead/molbloom icl: @@ -387,10 +448,10 @@ selfies-code: pul: key: - - 2023 - positive - ansari + - 2024 tweet: https://twitter.com/andrewwhite01/status/1666104177360084995 - link: https://www.biorxiv.org/content/10.1101/2023.06.01.543289v1.abstract - pdf: https://www.biorxiv.org/content/10.1101/2023.06.01.543289v1.full.pdf+html + link: https://pubs.rsc.org/en/content/articlelanding/2024/dd/d3dd00218g + pdf: https://pubs.rsc.org/en/content/articlepdf/2024/dd/d3dd00218g code: https://github.com/ur-whitelab/pu-peptides \ No newline at end of file diff --git a/src/index.html b/src/index.html index 9edd3b9..2946b2e 100644 --- a/src/index.html +++ b/src/index.html @@ -46,7 +46,6 @@