forked from SEMCOG/semcog_urbansim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRefiner.py
35 lines (29 loc) · 1.39 KB
/
Refiner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import orca
import shutil
import os
import pandas as pd
import models, utils
from urbansim.utils import misc, networks
orca.add_table('refiner_events', pd.read_csv("data/add_pop_11032017.csv"))
data_out = utils.get_run_filename()
print data_out
orca.run([
"refiner",
],
iter_vars=range(2015, 2015 + 1),
data_out=data_out,
out_base_tables=['jobs', 'base_job_space', 'employment_sectors', 'annual_relocation_rates_for_jobs',
'households', 'persons', 'annual_relocation_rates_for_households',
'buildings', 'parcels', 'zones', 'semmcds', 'counties',
'target_vacancies', 'building_sqft_per_job',
'annual_employment_control_totals',
'travel_data', 'zoning', 'large_areas', 'building_types', 'land_use_types',
'workers_labor_participation_rates', 'workers_employment_rates_by_large_area_age',
'workers_employment_rates_by_large_area',
'transit_stops', 'crime_rates', 'schools', 'poi',
'group_quarters', 'group_quarters_control_totals',
'annual_household_control_totals',
'events_addition', 'events_deletion', 'refiner_events'],
out_run_tables=['buildings', 'jobs', 'base_job_space', 'parcels', 'households', 'persons', 'group_quarters'],
out_interval=1,
compress=True)