-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBlandAltmanPlot.py
36 lines (27 loc) · 1.36 KB
/
BlandAltmanPlot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import matplotlib.pyplot as plt
import numpy as np
def bland_altman(data1, data2):
if len(data1) != len(data2):
print ("Datasets size mismatch")
return
mn = (data1 + data2) / 2
diff = data1 - data2
plt.figure(figsize=(10, 7))
plt.scatter(mn, diff, color='gray')
plt.plot([mn.min(), mn.max()], [diff.mean(), diff.mean()], lw='1.5')
s = "Mean = " + str(round(diff.mean(), 2))
plt.text(mn.max() - 1 / 2 * mn.std(), diff.mean(), s, fontweight='bold')
plt.plot([mn.min(), mn.max()], [diff.mean() + 1.96 * diff.std(),
diff.mean() + 1.96 * diff.std()], ls='--', lw='1.5', color='red')
s = "+1.96 SD = " + str(round(diff.mean() + 1.96 * diff.std(), 2))
plt.text(mn.max() - 1 / 2 * mn.std(), diff.mean() + 1.96 * diff.std(), s, fontweight='bold')
plt.plot([mn.min(), mn.max()], [diff.mean() - 1.96 * diff.std(),
diff.mean() - 1.96 * diff.std()], ls='--', lw='1.5', color='red')
s = "-1.96 SD = " + str(round(diff.mean() - 1.96 * diff.std(), 2))
plt.text(mn.max() - 1 / 2 * mn.std(), diff.mean() - 1.96 * diff.std(), s, fontweight='bold')
plt.ylabel('Difference between methods')
plt.xlabel('Mean of methods')
plt.title('Bland-Altman plot')
plt.show()
# # example:
# bland_altman(np.random.normal(size=50), np.random.normal(size=50))