-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathmain.c
752 lines (612 loc) · 18.6 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
/**
* Copyright (c) 2021 Brian Starkey <[email protected]>
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdio.h>
#include <string.h>
#include "RP2040.h"
#include "pico/time.h"
#include "hardware/dma.h"
#include "hardware/flash.h"
#include "hardware/structs/dma.h"
#include "hardware/structs/watchdog.h"
#include "hardware/gpio.h"
#include "hardware/resets.h"
#include "hardware/uart.h"
#include "hardware/watchdog.h"
#ifdef DEBUG
#include <stdio.h>
#include "pico/stdio_usb.h"
#define DBG_PRINTF_INIT() stdio_usb_init()
#define DBG_PRINTF(...) printf(__VA_ARGS__)
#else
#define DBG_PRINTF_INIT() { }
#define DBG_PRINTF(...) { }
#endif
// The bootloader can be entered in three ways:
// - BOOTLOADER_ENTRY_PIN is low
// - Watchdog scratch[5] == BOOTLOADER_ENTRY_MAGIC && scratch[6] == ~BOOTLOADER_ENTRY_MAGIC
// - No valid image header
#define BOOTLOADER_ENTRY_PIN 15
#define BOOTLOADER_ENTRY_MAGIC 0xb105f00d
#define UART_TX_PIN 0
#define UART_RX_PIN 1
#define UART_BAUD 921600
#define CMD_SYNC (('S' << 0) | ('Y' << 8) | ('N' << 16) | ('C' << 24))
#define CMD_READ (('R' << 0) | ('E' << 8) | ('A' << 16) | ('D' << 24))
#define CMD_CSUM (('C' << 0) | ('S' << 8) | ('U' << 16) | ('M' << 24))
#define CMD_CRC (('C' << 0) | ('R' << 8) | ('C' << 16) | ('C' << 24))
#define CMD_ERASE (('E' << 0) | ('R' << 8) | ('A' << 16) | ('S' << 24))
#define CMD_WRITE (('W' << 0) | ('R' << 8) | ('I' << 16) | ('T' << 24))
#define CMD_SEAL (('S' << 0) | ('E' << 8) | ('A' << 16) | ('L' << 24))
#define CMD_GO (('G' << 0) | ('O' << 8) | ('G' << 16) | ('O' << 24))
#define CMD_INFO (('I' << 0) | ('N' << 8) | ('F' << 16) | ('O' << 24))
#define CMD_REBOOT (('B' << 0) | ('O' << 8) | ('O' << 16) | ('T' << 24))
#define RSP_SYNC (('P' << 0) | ('I' << 8) | ('C' << 16) | ('O' << 24))
#define RSP_OK (('O' << 0) | ('K' << 8) | ('O' << 16) | ('K' << 24))
#define RSP_ERR (('E' << 0) | ('R' << 8) | ('R' << 16) | ('!' << 24))
#define IMAGE_HEADER_OFFSET (12 * 1024)
#define WRITE_ADDR_MIN (XIP_BASE + IMAGE_HEADER_OFFSET + FLASH_SECTOR_SIZE)
#define ERASE_ADDR_MIN (XIP_BASE + IMAGE_HEADER_OFFSET)
#define FLASH_ADDR_MAX (XIP_BASE + PICO_FLASH_SIZE_BYTES)
static void disable_interrupts(void)
{
SysTick->CTRL &= ~1;
NVIC->ICER[0] = 0xFFFFFFFF;
NVIC->ICPR[0] = 0xFFFFFFFF;
}
static void reset_peripherals(void)
{
reset_block(~(
RESETS_RESET_IO_QSPI_BITS |
RESETS_RESET_PADS_QSPI_BITS |
RESETS_RESET_SYSCFG_BITS |
RESETS_RESET_PLL_SYS_BITS
));
}
static void jump_to_vtor(uint32_t vtor)
{
// Derived from the Leaf Labs Cortex-M3 bootloader.
// Copyright (c) 2010 LeafLabs LLC.
// Modified 2021 Brian Starkey <[email protected]>
// Originally under The MIT License
uint32_t reset_vector = *(volatile uint32_t *)(vtor + 0x04);
SCB->VTOR = (volatile uint32_t)(vtor);
asm volatile("msr msp, %0"::"g"
(*(volatile uint32_t *)vtor));
asm volatile("bx %0"::"r" (reset_vector));
}
static uint32_t handle_sync(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out);
static uint32_t size_read(uint32_t *args_in, uint32_t *data_len_out, uint32_t *resp_data_len_out);
static uint32_t handle_read(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out);
static uint32_t size_csum(uint32_t *args_in, uint32_t *data_len_out, uint32_t *resp_data_len_out);
static uint32_t handle_csum(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out);
static uint32_t size_crc(uint32_t *args_in, uint32_t *data_len_out, uint32_t *resp_data_len_out);
static uint32_t handle_crc(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out);
static uint32_t handle_erase(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out);
static uint32_t size_write(uint32_t *args_in, uint32_t *data_len_out, uint32_t *resp_data_len_out);
static uint32_t handle_write(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out);
static uint32_t handle_seal(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out);
static uint32_t handle_go(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out);
static uint32_t handle_info(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out);
static uint32_t size_reboot(uint32_t *args_in, uint32_t *data_len_out, uint32_t *resp_data_len_out);
static uint32_t handle_reboot(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out);
struct command_desc {
uint32_t opcode;
uint32_t nargs;
uint32_t resp_nargs;
uint32_t (*size)(uint32_t *args_in, uint32_t *data_len_out, uint32_t *resp_data_len_out);
uint32_t (*handle)(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out);
};
const struct command_desc cmds[] = {
{
.opcode = CMD_SYNC,
.nargs = 0,
.resp_nargs = 0,
.size = NULL,
.handle = &handle_sync,
},
{
// READ addr len
// OKOK [data]
.opcode = CMD_READ,
.nargs = 2,
.resp_nargs = 0,
.size = &size_read,
.handle = &handle_read,
},
{
// CSUM addr len
// OKOK csum
.opcode = CMD_CSUM,
.nargs = 2,
.resp_nargs = 1,
.size = &size_csum,
.handle = &handle_csum,
},
{
// CRCC addr len
// OKOK crc
.opcode = CMD_CRC,
.nargs = 2,
.resp_nargs = 1,
.size = &size_crc,
.handle = &handle_crc,
},
{
// ERAS addr len
// OKOK
.opcode = CMD_ERASE,
.nargs = 2,
.resp_nargs = 0,
.size = NULL,
.handle = &handle_erase,
},
{
// WRIT addr len [data]
// OKOK crc
.opcode = CMD_WRITE,
.nargs = 2,
.resp_nargs = 1,
.size = &size_write,
.handle = &handle_write,
},
{
// SEAL vtor len crc
// OKOK
.opcode = CMD_SEAL,
.nargs = 3,
.resp_nargs = 0,
.size = NULL,
.handle = &handle_seal,
},
{
// GOGO vtor
// NO RESPONSE
.opcode = CMD_GO,
.nargs = 1,
.resp_nargs = 0,
.size = NULL,
.handle = &handle_go,
},
{
// INFO
// OKOK flash_start flash_size erase_size write_size max_data_len
.opcode = CMD_INFO,
.nargs = 0,
.resp_nargs = 5,
.size = NULL,
.handle = &handle_info,
},
{
// BOOT to_bootloader
// NO RESPONSE
.opcode = CMD_REBOOT,
.nargs = 1,
.resp_nargs = 0,
.size = &size_reboot,
.handle = &handle_reboot,
},
};
const unsigned int N_CMDS = (sizeof(cmds) / sizeof(cmds[0]));
const uint32_t MAX_NARG = 5;
const uint32_t MAX_DATA_LEN = 1024; //FLASH_SECTOR_SIZE;
static bool is_error(uint32_t status)
{
return status == RSP_ERR;
}
static uint32_t handle_sync(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out)
{
return RSP_SYNC;
}
static uint32_t size_read(uint32_t *args_in, uint32_t *data_len_out, uint32_t *resp_data_len_out)
{
uint32_t size = args_in[1];
if (size > MAX_DATA_LEN) {
return RSP_ERR;
}
// TODO: Validate address
*data_len_out = 0;
*resp_data_len_out = size;
return RSP_OK;
}
static uint32_t handle_read(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out)
{
uint32_t addr = args_in[0];
uint32_t size = args_in[1];
memcpy(resp_data_out, (void *)addr, size);
return RSP_OK;
}
static uint32_t size_csum(uint32_t *args_in, uint32_t *data_len_out, uint32_t *resp_data_len_out)
{
uint32_t addr = args_in[0];
uint32_t size = args_in[1];
if ((addr & 0x3) || (size & 0x3)) {
// Must be aligned
return RSP_ERR;
}
// TODO: Validate address
*data_len_out = 0;
*resp_data_len_out = 0;
return RSP_OK;
}
static uint32_t handle_csum(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out)
{
uint32_t dummy_dest;
uint32_t addr = args_in[0];
uint32_t size = args_in[1];
int channel = dma_claim_unused_channel(true);
dma_channel_config c = dma_channel_get_default_config(channel);
channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
channel_config_set_read_increment(&c, true);
channel_config_set_write_increment(&c, false);
channel_config_set_sniff_enable(&c, true);
dma_hw->sniff_data = 0;
dma_sniffer_enable(channel, 0xf, true);
dma_channel_configure(channel, &c, &dummy_dest, (void *)addr, size / 4, true);
dma_channel_wait_for_finish_blocking(channel);
dma_sniffer_disable();
dma_channel_unclaim(channel);
*resp_args_out = dma_hw->sniff_data;
return RSP_OK;
}
static uint32_t size_crc(uint32_t *args_in, uint32_t *data_len_out, uint32_t *resp_data_len_out)
{
uint32_t addr = args_in[0];
uint32_t size = args_in[1];
if ((addr & 0x3) || (size & 0x3)) {
// Must be aligned
return RSP_ERR;
}
// TODO: Validate address
*data_len_out = 0;
*resp_data_len_out = 0;
return RSP_OK;
}
// ptr must be 4-byte aligned and len must be a multiple of 4
static uint32_t calc_crc32(void *ptr, uint32_t len)
{
uint32_t dummy_dest, crc;
int channel = dma_claim_unused_channel(true);
dma_channel_config c = dma_channel_get_default_config(channel);
channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
channel_config_set_read_increment(&c, true);
channel_config_set_write_increment(&c, false);
channel_config_set_sniff_enable(&c, true);
// Seed the CRC calculation
dma_hw->sniff_data = 0xffffffff;
// Mode 1, then bit-reverse the result gives the same result as
// golang's IEEE802.3 implementation
dma_sniffer_enable(channel, 0x1, true);
dma_hw->sniff_ctrl |= DMA_SNIFF_CTRL_OUT_REV_BITS;
dma_channel_configure(channel, &c, &dummy_dest, ptr, len / 4, true);
dma_channel_wait_for_finish_blocking(channel);
// Read the result before resetting
crc = dma_hw->sniff_data ^ 0xffffffff;
dma_sniffer_disable();
dma_channel_unclaim(channel);
return crc;
}
static uint32_t handle_crc(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out)
{
uint32_t addr = args_in[0];
uint32_t size = args_in[1];
resp_args_out[0] = calc_crc32((void *)addr, size);
return RSP_OK;
}
static uint32_t handle_erase(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out)
{
uint32_t addr = args_in[0];
uint32_t size = args_in[1];
if ((addr < ERASE_ADDR_MIN) || (addr + size >= FLASH_ADDR_MAX)) {
// Outside flash
return RSP_ERR;
}
if ((addr & (FLASH_SECTOR_SIZE - 1)) || (size & (FLASH_SECTOR_SIZE - 1))) {
// Must be aligned
return RSP_ERR;
}
flash_range_erase(addr - XIP_BASE, size);
return RSP_OK;
}
static uint32_t size_write(uint32_t *args_in, uint32_t *data_len_out, uint32_t *resp_data_len_out)
{
uint32_t addr = args_in[0];
uint32_t size = args_in[1];
if ((addr < WRITE_ADDR_MIN) || (addr + size >= FLASH_ADDR_MAX)) {
// Outside flash
return RSP_ERR;
}
if ((addr & (FLASH_PAGE_SIZE - 1)) || (size & (FLASH_PAGE_SIZE -1))) {
// Must be aligned
return RSP_ERR;
}
if (size > MAX_DATA_LEN) {
return RSP_ERR;
}
// TODO: Validate address
*data_len_out = size;
*resp_data_len_out = 0;
return RSP_OK;
}
static uint32_t handle_write(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out)
{
uint32_t addr = args_in[0];
uint32_t size = args_in[1];
flash_range_program(addr - XIP_BASE, data_in, size);
resp_args_out[0] = calc_crc32((void *)addr, size);
return RSP_OK;
}
struct image_header {
uint32_t vtor;
uint32_t size;
uint32_t crc;
uint8_t pad[FLASH_PAGE_SIZE - (3 * 4)];
};
static_assert(sizeof(struct image_header) == FLASH_PAGE_SIZE, "image_header must be FLASH_PAGE_SIZE bytes");
static bool image_header_ok(struct image_header *hdr)
{
uint32_t *vtor = (uint32_t *)hdr->vtor;
uint32_t calc = calc_crc32((void *)hdr->vtor, hdr->size);
// CRC has to match
if (calc != hdr->crc) {
return false;
}
// Stack pointer needs to be in RAM
if (vtor[0] < SRAM_BASE) {
return false;
}
// Reset vector should be in the image, and thumb (bit 0 set)
if ((vtor[1] < hdr->vtor) || (vtor[1] > hdr->vtor + hdr->size) || !(vtor[1] & 1)) {
return false;
}
// Looks OK.
return true;
}
static uint32_t handle_seal(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out)
{
struct image_header hdr = {
.vtor = args_in[0],
.size = args_in[1],
.crc = args_in[2],
};
if ((hdr.vtor & 0xff) || (hdr.size & 0x3)) {
// Must be aligned
return RSP_ERR;
}
if (!image_header_ok(&hdr)) {
return RSP_ERR;
}
flash_range_erase(IMAGE_HEADER_OFFSET, FLASH_SECTOR_SIZE);
flash_range_program(IMAGE_HEADER_OFFSET, (const uint8_t *)&hdr, sizeof(hdr));
struct image_header *check = (struct image_header *)(XIP_BASE + IMAGE_HEADER_OFFSET);
if (memcmp(&hdr, check, sizeof(hdr))) {
return RSP_ERR;
}
return RSP_OK;
}
static uint32_t handle_go(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out)
{
disable_interrupts();
reset_peripherals();
jump_to_vtor(args_in[0]);
while(1);
return RSP_ERR;
}
static uint32_t handle_info(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out)
{
resp_args_out[0] = WRITE_ADDR_MIN;
resp_args_out[1] = (XIP_BASE + PICO_FLASH_SIZE_BYTES) - WRITE_ADDR_MIN;
resp_args_out[2] = FLASH_SECTOR_SIZE;
resp_args_out[3] = FLASH_PAGE_SIZE;
resp_args_out[4] = MAX_DATA_LEN;
return RSP_OK;
}
static void do_reboot(bool to_bootloader)
{
hw_clear_bits(&watchdog_hw->ctrl, WATCHDOG_CTRL_ENABLE_BITS);
if (to_bootloader) {
watchdog_hw->scratch[5] = BOOTLOADER_ENTRY_MAGIC;
watchdog_hw->scratch[6] = ~BOOTLOADER_ENTRY_MAGIC;
} else {
watchdog_hw->scratch[5] = 0;
watchdog_hw->scratch[6] = 0;
}
watchdog_reboot(0, 0, 0);
while (1) {
tight_loop_contents();
asm("");
}
}
static uint32_t size_reboot(uint32_t *args_in, uint32_t *data_len_out, uint32_t *resp_data_len_out)
{
*data_len_out = 0;
*resp_data_len_out = 0;
return RSP_OK;
}
static uint32_t handle_reboot(uint32_t *args_in, uint8_t *data_in, uint32_t *resp_args_out, uint8_t *resp_data_out)
{
// Will never return
do_reboot(args_in[0]);
return RSP_ERR;
}
static const struct command_desc *find_command_desc(uint32_t opcode)
{
unsigned int i;
for (i = 0; i < N_CMDS; i++) {
if (cmds[i].opcode == opcode) {
return &cmds[i];
}
}
return NULL;
}
struct cmd_context {
uint8_t *uart_buf;
const struct command_desc *desc;
uint32_t opcode;
uint32_t status;
uint32_t *args;
uint8_t *data;
uint32_t *resp_args;
uint8_t *resp_data;
uint32_t data_len;
uint32_t resp_data_len;
};
enum state {
STATE_WAIT_FOR_SYNC,
STATE_READ_OPCODE,
STATE_READ_ARGS,
STATE_READ_DATA,
STATE_HANDLE_DATA,
STATE_ERROR,
};
static enum state state_wait_for_sync(struct cmd_context *ctx)
{
int idx = 0;
uint8_t *recv = (uint8_t *)&ctx->opcode;
uint8_t *match = (uint8_t *)&ctx->status;
ctx->status = CMD_SYNC;
gpio_put(PICO_DEFAULT_LED_PIN, 1);
while (idx < sizeof(ctx->opcode)) {
uart_read_blocking(uart0, &recv[idx], 1);
gpio_xor_mask((1 << PICO_DEFAULT_LED_PIN));
if (recv[idx] != match[idx]) {
// Start again
idx = 0;
} else {
// Move on
idx++;
}
}
assert(ctx->opcode == CMD_SYNC);
return STATE_READ_ARGS;
}
static enum state state_read_opcode(struct cmd_context *ctx)
{
uart_read_blocking(uart0, (uint8_t *)&ctx->opcode, sizeof(ctx->opcode));
return STATE_READ_ARGS;
}
static enum state state_read_args(struct cmd_context *ctx)
{
const struct command_desc *desc = find_command_desc(ctx->opcode);
if (!desc) {
// TODO: Error handler that can do args?
ctx->status = RSP_ERR;
return STATE_ERROR;
}
ctx->desc = desc;
ctx->args = (uint32_t *)(ctx->uart_buf + sizeof(ctx->opcode));
ctx->data = (uint8_t *)(ctx->args + desc->nargs);
ctx->resp_args = ctx->args;
ctx->resp_data = (uint8_t *)(ctx->resp_args + desc->resp_nargs);
uart_read_blocking(uart0, (uint8_t *)ctx->args, sizeof(*ctx->args) * desc->nargs);
return STATE_READ_DATA;
}
static enum state state_read_data(struct cmd_context *ctx)
{
const struct command_desc *desc = ctx->desc;
if (desc->size) {
ctx->status = desc->size(ctx->args, &ctx->data_len, &ctx->resp_data_len);
if (is_error(ctx->status)) {
return STATE_ERROR;
}
} else {
ctx->data_len = 0;
ctx->resp_data_len = 0;
}
// TODO: Check sizes
uart_read_blocking(uart0, (uint8_t *)ctx->data, ctx->data_len);
return STATE_HANDLE_DATA;
}
static enum state state_handle_data(struct cmd_context *ctx)
{
const struct command_desc *desc = ctx->desc;
if (desc->handle) {
ctx->status = desc->handle(ctx->args, ctx->data, ctx->resp_args, ctx->resp_data);
if (is_error(ctx->status)) {
return STATE_ERROR;
}
} else {
// TODO: Should we just assert(desc->handle)?
ctx->status = RSP_OK;
}
size_t resp_len = sizeof(ctx->status) + (sizeof(*ctx->resp_args) * desc->resp_nargs) + ctx->resp_data_len;
memcpy(ctx->uart_buf, &ctx->status, sizeof(ctx->status));
uart_write_blocking(uart0, ctx->uart_buf, resp_len);
return STATE_READ_OPCODE;
}
static enum state state_error(struct cmd_context *ctx)
{
size_t resp_len = sizeof(ctx->status);
memcpy(ctx->uart_buf, &ctx->status, sizeof(ctx->status));
uart_write_blocking(uart0, ctx->uart_buf, resp_len);
return STATE_WAIT_FOR_SYNC;
}
static bool should_stay_in_bootloader()
{
bool wd_says_so = (watchdog_hw->scratch[5] == BOOTLOADER_ENTRY_MAGIC) &&
(watchdog_hw->scratch[6] == ~BOOTLOADER_ENTRY_MAGIC);
return !gpio_get(BOOTLOADER_ENTRY_PIN) || wd_says_so;
}
int main(void)
{
gpio_init(PICO_DEFAULT_LED_PIN);
gpio_set_dir(PICO_DEFAULT_LED_PIN, GPIO_OUT);
gpio_put(PICO_DEFAULT_LED_PIN, 1);
gpio_init(BOOTLOADER_ENTRY_PIN);
gpio_pull_up(BOOTLOADER_ENTRY_PIN);
gpio_set_dir(BOOTLOADER_ENTRY_PIN, 0);
sleep_ms(10);
struct image_header *hdr = (struct image_header *)(XIP_BASE + IMAGE_HEADER_OFFSET);
if (!should_stay_in_bootloader() && image_header_ok(hdr)) {
uint32_t vtor = *((uint32_t *)(XIP_BASE + IMAGE_HEADER_OFFSET));
disable_interrupts();
reset_peripherals();
jump_to_vtor(vtor);
}
DBG_PRINTF_INIT();
uart_init(uart0, UART_BAUD);
gpio_set_function(UART_TX_PIN, GPIO_FUNC_UART);
gpio_set_function(UART_RX_PIN, GPIO_FUNC_UART);
uart_set_hw_flow(uart0, false, false);
struct cmd_context ctx;
uint8_t uart_buf[(sizeof(uint32_t) * (1 + MAX_NARG)) + MAX_DATA_LEN];
ctx.uart_buf = uart_buf;
enum state state = STATE_WAIT_FOR_SYNC;
while (1) {
switch (state) {
case STATE_WAIT_FOR_SYNC:
DBG_PRINTF("wait_for_sync\n");
state = state_wait_for_sync(&ctx);
DBG_PRINTF("wait_for_sync done\n");
break;
case STATE_READ_OPCODE:
DBG_PRINTF("read_opcode\n");
state = state_read_opcode(&ctx);
DBG_PRINTF("read_opcode done\n");
break;
case STATE_READ_ARGS:
DBG_PRINTF("read_args\n");
state = state_read_args(&ctx);
DBG_PRINTF("read_args done\n");
break;
case STATE_READ_DATA:
DBG_PRINTF("read_data\n");
state = state_read_data(&ctx);
DBG_PRINTF("read_data done\n");
break;
case STATE_HANDLE_DATA:
DBG_PRINTF("handle_data\n");
state = state_handle_data(&ctx);
DBG_PRINTF("handle_data done\n");
break;
case STATE_ERROR:
DBG_PRINTF("error\n");
state = state_error(&ctx);
DBG_PRINTF("error done\n");
break;
}
}
return 0;
}