-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
executable file
·162 lines (136 loc) · 7.42 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import sys
from pipeline import *
import argparse
import h5py
import os
import random
import time
import numpy as np
import torch
from torch.autograd import Variable
from torch import nn
from torch import cuda
from holder import *
from embeddings import *
from data import *
from boundary_loss import *
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dir', help="Path to the data dir", default="data/squad-v1.1/")
parser.add_argument('--data', help="Path to data hdf5 file.", default="squad-val.hdf5")
parser.add_argument('--load_file', help="Path from where model to be loaded.", default="")
parser.add_argument('--word_vecs', help="The path to word embeddings", default = "glove.hdf5")
parser.add_argument('--char_idx', help="The path to word2char index file", default = "char.idx.hdf5")
parser.add_argument('--dict', help="The path to word dictionary", default = "squad.word.dict")
parser.add_argument('--char_dict', help="The path to char dictionary", default = "char.dict.txt")
parser.add_argument('--res', help="Path to resource files, seperated by comma.", default="")
#
parser.add_argument('--use_char_enc', help="Whether to use char encoding", type=int, default=1)
parser.add_argument('--char_encoder', help="The type of char encoder, cnn/rnn", default='cnn')
parser.add_argument('--char_filters', help="The list of filters for char cnn", default='5')
parser.add_argument('--num_char', help="The number of distinct chars", type=int, default=284)
parser.add_argument('--char_emb_size', help="The input char embedding dim", type=int, default=20)
parser.add_argument('--char_enc_size', help="The input char encoding dim", type=int, default=100)
parser.add_argument('--word_vec_size', help="The input word embedding dim", type=int, default=300)
parser.add_argument('--elmo_in_size', help="The input elmo dim", type=int, default=1024)
parser.add_argument('--elmo_size', help="The hidden elmo dim", type=int, default=1024)
parser.add_argument('--elmo_top_only', help="Whether to use elmo top layer only", type=int, default=0)
parser.add_argument('--use_elmo_post', help="Whether to use elmo after encoder", type=int, default=1)
parser.add_argument('--hidden_size', help="The general hidden size of the pipeline", type=int, default=100)
parser.add_argument('--token_l', help="The maximal token length", type=int, default=16)
parser.add_argument('--char_dropout', help="The dropout probability on char encoder", type=float, default=0.0)
parser.add_argument('--elmo_dropout', help="The dropout probability on ELMO", type=float, default=0.0)
parser.add_argument('--dropout', help="The dropout probability", type=float, default=0.0)
#parser.add_argument('--dynamic_elmo', help="Whether to use elmo model to parse text dynamically, or use cached ELMo", type=int, default=0)
parser.add_argument('--fix_elmo', help="Whether to make ELMo model NOT learnable", type=int, default=1)
#
parser.add_argument('--enc', help="The type of encoder, encoder/encoder_with_elmo", default='encoder')
parser.add_argument('--att', help="The type of biattention, biattention", default='biatt')
parser.add_argument('--reenc', help="The type of reencoder, reencoder/match", default='reencoder')
parser.add_argument('--self_att', help="The type of self attention, self_att", default='self_att')
parser.add_argument('--cls', help="The type of classifier, boundary", default='boundary')
parser.add_argument('--loss', help="The type of loss, boundary", default='boundary')
# TODO, param_init of uniform dist or normal dist???
parser.add_argument('--fix_word_vecs', help="Whether to make word embeddings NOT learnable", type=int, default=1)
parser.add_argument('--gpuid', help="The GPU index, if -1 then use CPU", type=int, default=-1)
parser.add_argument('--enc_rnn_layer', help="The number of layers of rnn encoder", type=int, default=1)
parser.add_argument('--reenc_rnn_layer', help="The number of layers of rnn reencoder", type=int, default=1)
parser.add_argument('--cls_rnn_layer', help="The number of layers of classifier rnn", type=int, default=1)
parser.add_argument('--num_cls_pass', help="The number passes in multipass classifier", type=int, default=1)
parser.add_argument('--birnn', help="Whether to use bidirectional rnn", type=int, default=1)
parser.add_argument('--rnn_type', help="The type of rnn to use (lstm or gru)", default='lstm')
parser.add_argument('--hw_layer', help="The number of highway layers to use", type=int, default=2)
parser.add_argument('--span_l', help="The maximal span length allowed for prediction", type=int, default=17)
# constraint
parser.add_argument('--rho_w', help="The weight of within layer struct attention penalty", type=float, default=1.0)
parser.add_argument('--constr_on', help="Directions of attentions to apply constraints on", default='1')
parser.add_argument('--within_constr', help="The list of att constraint layers to use, no if empty", default="")
parser.add_argument('--fix_rho', help="Whether to fix rho", type=int, default=1)
# printing
parser.add_argument('--verbose', help="Whether to print out every prediction", type=int, default=0)
parser.add_argument('--print', help="Prefix to where verbose printing will be piped", default='print')
def evaluate(opt, shared, m, data):
m.train(False)
val_loss = 0.0
num_ex = 0
verbose = opt.verbose==1
loss = None
if opt.loss == 'boundary':
loss = BoundaryLoss(opt, shared)
else:
assert(False)
loss.verbose = verbose
m.begin_pass()
for i in range(data.size()):
(data_name, source, target, char_source, char_target,
batch_ex_idx, batch_l, source_l, source_sent_l, target_l, span, res_map) = data[i]
wv_idx1 = Variable(source, requires_grad=False)
wv_idx2 = Variable(target, requires_grad=False)
cv_idx1 = Variable(char_source, requires_grad=False)
cv_idx2 = Variable(char_target, requires_grad=False)
y_gold = Variable(span, requires_grad=False)
# update network parameters
m.update_context(batch_ex_idx, batch_l, source_l, source_sent_l, target_l, res_map)
# forward pass
pred = m.forward(wv_idx1, wv_idx2, cv_idx1, cv_idx2)
# loss
batch_loss = loss(pred, y_gold)
# stats
val_loss += float(batch_loss.data)
num_ex += batch_l
perf, extra_perf = loss.get_epoch_metric()
m.end_pass()
return (perf, extra_perf, val_loss / num_ex, num_ex)
def main(args):
opt = parser.parse_args(args)
shared = Holder()
#
opt.data = opt.dir + opt.data
opt.res = '' if opt.res == '' else ','.join([opt.dir + path for path in opt.res.split(',')])
opt.word_vecs = opt.dir + opt.word_vecs
opt.char_idx = opt.dir + opt.char_idx
opt.dict = opt.dir + opt.dict
opt.char_dict = opt.dir + opt.char_dict
if opt.gpuid != -1:
torch.cuda.set_device(opt.gpuid)
torch.cuda.manual_seed_all(1)
# build model
m = Pipeline(opt, shared)
# initialization
print('loading pretrained model from {0}...'.format(opt.load_file))
param_dict = load_param_dict('{0}.hdf5'.format(opt.load_file))
m.set_param_dict(param_dict)
if opt.gpuid != -1:
m = m.cuda()
# loading data
res_files = None if opt.res == '' else opt.res.split(',')
data = Data(opt, opt.data, res_files)
#
perf, extra_perf, avg_loss, num_ex = evaluate(opt, shared, m, data)
extra_perf_str = ' '.join(['{:.4f}'.format(p) for p in extra_perf])
print('Val {0:.4f} Extra {1} Loss: {2:.4f}'.format(
perf, extra_perf_str, avg_loss))
#print('saving model to {0}'.format('tmp'))
#param_dict = m.get_param_dict()
#save_param_dict(param_dict, '{0}.hdf5'.format('tmp'))
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))