-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathself_attention.py
107 lines (85 loc) · 2.99 KB
/
self_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import sys
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
from view import *
from holder import *
from util import *
from join_table import *
from trilinear_prod import *
from bilinear_prod import *
from linear_prod import *
# self attention
class SelfAttention(torch.nn.Module):
def __init__(self, opt, shared, hidden_size, prod_type, mask_type):
super(SelfAttention, self).__init__()
self.opt = opt
self.shared = shared
self.prod_type = prod_type
self.mask_type = mask_type
if self.prod_type == 'linear':
self.prod = LinearProd(opt, hidden_size)
elif self.prod_type == 'bilinear':
self.prod = BilinearProd(opt, hidden_size)
elif self.prod_type == 'trilinear' or self.prod_type == 'trilinear_norm':
self.prod = TrilinearProd(opt, hidden_size)
self.bias = nn.Parameter(-torch.ones(1), requires_grad=True)
self.bias.skip_init = True
self.phi_joiner = JoinTable(2)
self.softmax = nn.Softmax(2)
def normalize(self, scores):
if self.prod_type == 'linear' or self.prod_type == 'bilinear':
return self.softmax(scores)
elif self.prod_type == 'trilinear' or self.prod_type == 'trilinear_norm':
exp = scores.exp()
p = exp / (exp.sum(2, keepdim=True) + self.bias.exp())
return p
assert(False)
def masked_fill_diagonal(self, scores):
mask = Variable(torch.eye(scores.shape[1]), requires_grad=False).unsqueeze(0)
if self.opt.gpuid != -1:
mask = mask.cuda()
return self.shared.neg_inf * mask + (self.shared.one - mask) * scores
def get_similarity(self, x):
if self.prod_type == 'linear':
return self.prod(x)
elif self.prod_type == 'bilinear':
return self.prod(x, x)
elif self.prod_type == 'trilinear':
return self.prod(x, x)
elif self.prod_type == 'trilinear_norm':
scores = self.prod(x, x) # scale it as "att is all you need"
scale = torch.ones(1) * (1.0 / np.sqrt(x.shape[1]))
if x.is_cuda:
scale = scale.cuda()
return scores * scale
assert(False)
def masked_fill_scores(self, scores):
if self.mask_type == 'diagonal':
return self.masked_fill_diagonal(scores)
elif self.mask_type == 'query':
if self.prod_type == 'linear':
mask = self.shared.query_mask.unsqueeze(1)
return scores * mask + (self.shared.one - mask) * self.shared.neg_inf
else:
scores = self.masked_fill_diagonal(scores)
mask = self.shared.query_mask.unsqueeze(-1).bmm(self.shared.query_mask.unsqueeze(1))
return scores * mask + (self.shared.one - mask) * self.shared.neg_inf
assert(False)
def forward(self, x):
x = x.contiguous()
# get similarity scores
scores = self.get_similarity(x)
# block diagonal alignment
if self.mask_type is not None:
scores = self.masked_fill_scores(scores)
# get normalized alignemnt
p = self.normalize(scores)
# attend
agg = p.bmm(x)
# in case x is query and the prod type is not linear,
# mask the result further
if self.mask_type == 'query' and self.prod_type != 'linear':
agg = p.bmm(x) * self.shared.query_mask.unsqueeze(-1)
return agg