The general-purpose models are affine-invariant and as such need a pre-alignment step before an error can be computed.
Sample code for NYUv2 can be found here: https://gist.github.com/ranftlr/a1c7a24ebb24ce0e2f2ace5bce917022
Sample code for KITTI can be found here: https://gist.github.com/ranftlr/45f4c7ddeb1bbb88d606bc600cab6c8d
- Remove images from
/input/
and/output_monodepth/
folders - Download
kitti_eval_dataset.zip
https://drive.google.com/file/d/1GbfMGuwg2VS06Vl75-_tB5FDj9EOrjl0/view?usp=sharing and unzip it in the/input/
folder (or follow this repository https://github.com/cogaplex-bts/bts to get RGB and Depth images from list eigen_test_files_with_gt.txt ) - Download dpt_hybrid_kitti-cb926ef4.pt model and place it in the
/weights/
folder - Download eval_with_pngs.py in the root folder
python run_monodepth.py --model_type dpt_hybrid_kitti --kitti_crop --absolute_depth
python ./eval_with_pngs.py --pred_path ./output_monodepth/ --gt_path ./input/gt/ --dataset kitti --min_depth_eval 1e-3 --max_depth_eval 80 --garg_crop --do_kb_crop
Result:
Evaluating 697 files
GT files reading done
45 GT files missing
Computing errors
d1, d2, d3, AbsRel, SqRel, RMSE, RMSElog, SILog, log10
0.959, 0.995, 0.999, 0.062, 0.222, 2.575, 0.092, 8.282, 0.027
Done.
- Remove images from
/input/
and/output_monodepth/
folders - Download
nyu_eval_dataset.zip
https://drive.google.com/file/d/1b37uu-bqTZcSwokGkHIOEXuuBdfo80HI/view?usp=sharing and unzip it in the/input/
folder (or follow this repository https://github.com/cogaplex-bts/bts to get RGB and Depth images from list nyudepthv2_test_files_with_gt.txt ) - Download dpt_hybrid_nyu-2ce69ec7.pt model (or a new model that is fine-tuned with slightly different hyperparameters dpt_hybrid_nyu_new-217f207d.pt ) and place it in the
/weights/
folder - Download eval_with_pngs.py in the root folder
python run_monodepth.py --model_type dpt_hybrid_nyu --absolute_depth
(or for new modelpython run_monodepth.py --model_type dpt_hybrid_nyu --absolute_depth --model_weights weights/dpt_hybrid_nyu_new-217f207d.pt
)python ./eval_with_pngs.py --pred_path ./output_monodepth/ --gt_path ./input/gt/ --dataset nyu --max_depth_eval 10 --eigen_crop
Result (old model) - from paper:
Evaluating 654 files
GT files reading done
0 GT files missing
Computing errors
d1, d2, d3, AbsRel, SqRel, RMSE, RMSElog, SILog, log10
0.904, 0.988, 0.998, 0.109, 0.054, 0.357, 0.129, 9.521, 0.045
Done.
Result (new model):
GT files reading done
697 GT files missing
Computing errors
d1, d2, d3, AbsRel, SqRel, RMSE, RMSElog, SILog, log10
0.905, 0.988, 0.998, 0.109, 0.055, 0.357, 0.129, 9.427, 0.045
Done.