-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhofs.ml
665 lines (618 loc) · 21.6 KB
/
hofs.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
(* Higher-order functions on terms *)
open Environ
open Constr
open Contextutils
open Envutils
open Utilities
open Names
open Evd
open Stateutils
(* Predicates to determine whether to apply a mapped function *)
type ('a, 'b) pred = 'a -> 'b -> bool
type 'b unit_pred = 'b -> bool
type ('a, 'b) pred_with_env = env -> evar_map -> 'a -> 'b -> evar_map * bool
type 'b unit_pred_with_env = env -> evar_map -> 'b -> evar_map * bool
(* Functions to use in maps *)
type ('a, 'b) transformer = 'a -> 'b -> 'b
type 'b unit_transformer = 'b -> 'b
type ('a, 'b) list_transformer = 'a -> 'b -> 'b list
type ('a, 'b) transformer_with_env = env -> evar_map -> 'a -> 'b -> evar_map * 'b
type 'b unit_transformer_with_env = env -> evar_map -> 'b -> evar_map * 'b
type ('a, 'b) list_transformer_with_env = env -> evar_map -> 'a -> 'b -> evar_map * 'b list
type ('a, 'b) transformer_with_env_types = env -> evar_map -> 'a -> types -> evar_map * 'b
type ('a, 'b) list_transformer_with_env_types = env -> evar_map -> 'a -> types -> (evar_map * 'b) list
(* Updating arguments *)
type 'a updater = 'a -> 'a
(* Mapper functions *)
type ('a, 'b) mapper_with_env =
('a, 'b) transformer_with_env ->
'a updater ->
('a, 'b) transformer_with_env
type ('a, 'b) mapper =
('a, 'b) transformer ->
'a updater ->
('a, 'b) transformer
type ('a, 'b) list_mapper_with_env =
('a, 'b) list_transformer_with_env ->
'a updater ->
('a, 'b) list_transformer_with_env
type ('a, 'b) list_mapper =
('a, 'b) list_transformer ->
'a updater ->
('a, 'b) list_transformer
type ('a, 'b) conditional_mapper_with_env =
('a, 'b) pred_with_env ->
('a, 'b) transformer_with_env ->
'a updater ->
('a, 'b) transformer_with_env
type 'b conditional_unit_mapper_with_env =
'b unit_pred_with_env ->
'b unit_transformer_with_env ->
'b unit_transformer_with_env
type ('a, 'b) conditional_mapper =
('a, 'b) pred ->
('a, 'b) transformer ->
'a updater ->
('a, 'b) transformer
type 'b unit_conditional_mapper =
'b unit_pred ->
'b unit_transformer ->
'b unit_transformer
type ('a, 'b) conditional_list_mapper_with_env =
('a, 'b) pred_with_env ->
('a, 'b) list_transformer_with_env ->
'a updater ->
('a, 'b) list_transformer_with_env
type ('a, 'b) proposition_mapper =
('a, 'b) pred ->
'a updater ->
('a, 'b) pred
type ('a, 'b) proposition_mapper_with_env =
('a, 'b) pred_with_env ->
'a updater ->
('a, 'b) pred_with_env
type ('a, 'b) proposition_list_mapper =
('a, 'b) pred ->
'a updater ->
('a, 'b) list_transformer
(*
* TODO changing function order so they end with tr and sigma will make this
* much neater with bind
*)
(* --- Terms --- *)
(*
* Map recursively on an array of arguments, threading the state through
* the result
*)
let map_rec_args map_rec env sigma a args =
map_state_array (fun tr sigma -> map_rec env sigma a tr) args sigma
(*
* Same, but return all combinations of the results
* TODO can we reuse map_rec_args, or is the type system too weak?
*)
let map_rec_args_cartesian map_rec env sigma a args =
bind
(map_state_array (fun tr sigma -> map_rec env sigma a tr) args)
(fun l -> ret (combine_cartesian_append l))
sigma
(*
* Predicate version
*)
let exists_args map_rec env sigma a args =
exists_state (fun tr sigma -> map_rec env sigma a tr) (Array.to_list args) sigma
(*
* Recurse on a mapping function with an environment for a fixpoint
*)
let map_rec_env_fix map_rec d env (sigma : evar_map) a ns ts (trm : types) =
let fix_bindings = bindings_for_fix ns ts in
let env_fix = push_rel_context fix_bindings env in
let n = List.length fix_bindings in
let d_n = List.fold_left (fun a' _ -> d a') a (range 0 n) in
map_rec env_fix sigma d_n trm
(*
* Recurse on a mapping function with an environment for a fixpoint
* TODO do we need both of these, or is type system too weak?
*)
let map_rec_env_fix_cartesian (map_rec : ('a, 'b) list_transformer_with_env) d env sigma a ns ts =
let fix_bindings = bindings_for_fix ns ts in
let env_fix = push_rel_context fix_bindings env in
let n = List.length fix_bindings in
let d_n = List.fold_left (fun a' _ -> d a') a (range 0 n) in
map_rec env_fix sigma d_n
(*
* TODO explain
*)
let map_term_env_rec map_rec f d env sigma a trm =
match kind trm with
| Cast (c, k, t) ->
let sigma, c' = map_rec env sigma a c in
let sigma, t' = map_rec env sigma a t in
sigma, mkCast (c', k, t')
| Prod (n, t, b) ->
let sigma, t' = map_rec env sigma a t in
let sigma, b' = map_rec (push_local (n, t) env) sigma (d a) b in
sigma, mkProd (n, t', b')
| Lambda (n, t, b) ->
let sigma, t' = map_rec env sigma a t in
let sigma, b' = map_rec (push_local (n, t) env) sigma (d a) b in
sigma, mkLambda (n, t', b')
| LetIn (n, trm, typ, e) ->
let sigma, trm' = map_rec env sigma a trm in
let sigma, typ' = map_rec env sigma a typ in
let sigma, e' = map_rec (push_let_in (n, e, typ) env) sigma (d a) e in
sigma, mkLetIn (n, trm', typ', e')
| App (fu, args) ->
let sigma, fu' = map_rec env sigma a fu in
let sigma, args' = map_rec_args map_rec env sigma a args in
sigma, mkApp (fu', args')
| Case (ci, ct, m, bs) ->
let sigma, ct' = map_rec env sigma a ct in
let sigma, m' = map_rec env sigma a m in
let sigma, bs' = map_rec_args map_rec env sigma a bs in
sigma, mkCase (ci, ct', m', bs')
| Fix ((is, i), (ns, ts, ds)) ->
let sigma, ts' = map_rec_args map_rec env sigma a ts in
let sigma, ds' = map_rec_args (fun env sigma a trm -> map_rec_env_fix map_rec d env sigma a ns ts trm) env sigma a ds in (* TODO refactor *)
sigma, mkFix ((is, i), (ns, ts', ds'))
| CoFix (i, (ns, ts, ds)) ->
let sigma, ts' = map_rec_args map_rec env sigma a ts in
let sigma, ds' = map_rec_args (fun env sigma a trm -> map_rec_env_fix map_rec d env sigma a ns ts trm) env sigma a ds in (* TODO refactor *)
sigma, mkCoFix (i, (ns, ts', ds'))
| Proj (p, c) ->
let sigma, c' = map_rec env sigma a c in
sigma, mkProj (p, c')
| _ ->
f env sigma a trm
(*
* Map a function over a term in an environment
* Update the environment as you go
* Update the argument of type 'a using the a supplied update function
* Return a new term
*)
let rec map_term_env f d env sigma a trm =
map_term_env_rec (map_term_env f d) f d env sigma a trm
(*
* Map a function over a term, when the environment doesn't matter
* Update the argument of type 'a using the a supplied update function
* Return a new term
*)
let map_term f d a trm =
snd
(map_term_env
(fun _ _ a t -> Evd.empty, f a t)
d
empty_env
Evd.empty
a
trm)
(*
* TODO explain
*)
let map_subterms_env_rec map_rec f d env sigma a trm =
match kind trm with
| Cast (c, k, t) ->
let sigma, cs' = map_rec env sigma a c in
let sigma, ts' = map_rec env sigma a t in
sigma, combine_cartesian (fun c' t' -> mkCast (c', k, t')) cs' ts'
| Prod (n, t, b) ->
let sigma, ts' = map_rec env sigma a t in
let sigma, bs' = map_rec (push_local (n, t) env) sigma (d a) b in
sigma, combine_cartesian (fun t' b' -> mkProd (n, t', b')) ts' bs'
| Lambda (n, t, b) ->
let sigma, ts' = map_rec env sigma a t in
let sigma, bs' = map_rec (push_local (n, t) env) sigma (d a) b in
sigma, combine_cartesian (fun t' b' -> mkLambda (n, t', b')) ts' bs'
| LetIn (n, trm, typ, e) ->
let sigma, trms' = map_rec env sigma a trm in
let sigma, typs' = map_rec env sigma a typ in
let sigma, es' = map_rec (push_let_in (n, e, typ) env) sigma (d a) e in
sigma, combine_cartesian (fun trm' (typ', e') -> mkLetIn (n, trm', typ', e')) trms' (cartesian typs' es')
| App (fu, args) ->
let sigma, fus' = map_rec env sigma a fu in
let sigma, argss' = map_rec_args_cartesian map_rec env sigma a args in
sigma, combine_cartesian (fun fu' args' -> mkApp (fu', args')) fus' argss'
| Case (ci, ct, m, bs) ->
let sigma, cts' = map_rec env sigma a ct in
let sigma, ms' = map_rec env sigma a m in
let sigma, bss' = map_rec_args_cartesian map_rec env sigma a bs in
sigma, combine_cartesian (fun ct' (m', bs') -> mkCase (ci, ct', m', bs')) cts' (cartesian ms' bss')
| Fix ((is, i), (ns, ts, ds)) ->
let sigma, tss' = map_rec_args_cartesian map_rec env sigma a ts in
let sigma, dss' = map_rec_args_cartesian (fun env sigma a trm -> map_rec_env_fix map_rec d env sigma a ns ts trm) env sigma a ds in (* TODO refactor *)
sigma, combine_cartesian (fun ts' ds' -> mkFix ((is, i), (ns, ts', ds'))) tss' dss'
| CoFix (i, (ns, ts, ds)) ->
let sigma, tss' = map_rec_args_cartesian map_rec env sigma a ts in
let sigma, dss' = map_rec_args_cartesian (fun env sigma a trm -> map_rec_env_fix map_rec d env sigma a ns ts trm) env sigma a ds in (* TODO refactor *)
sigma, combine_cartesian (fun ts' ds' -> mkCoFix (i, (ns, ts', ds'))) tss' dss'
| Proj (p, c) ->
let sigma, cs' = map_rec env sigma a c in
sigma, List.map (fun c' -> mkProj (p, c')) cs'
| _ ->
f env sigma a trm
(*
* Map a function over subterms of a term in an environment
* Update the environment as you go
* Update the argument of type 'a using the a supplied update function
* Return all combinations of new terms
*)
let rec map_subterms_env f d env sigma a trm : evar_map * types list =
map_subterms_env_rec (map_subterms_env f d) f d env sigma a trm
(*
* Map a function over subterms of a term, when the environment doesn't matter
* Update the argument of type 'a using the a supplied update function
* Return all combinations of new terms
*)
let map_subterms f d a trm : types list =
snd
(map_subterms_env
(fun _ _ a t -> Evd.empty, f a t)
d
empty_env
Evd.empty
a
trm)
(*
* Map a function over a term in an environment
* Only apply the function when a proposition is true
* Apply the function eagerly
* Update the environment as you go
* Update the argument of type 'a using the a supplied update function
* Return a new term
*)
let rec map_term_env_if p f d env sigma a trm =
branch_state
(fun trm sigma -> p env sigma a trm)
(fun trm sigma -> f env sigma a trm)
(fun trm sigma ->
map_term_env_rec
(map_term_env_if p f d)
(fun _ sigma _ tr -> sigma, tr)
d
env
sigma
a
trm)
trm
sigma
(*
* TODO explain
*)
let map_term_env_rec_shallow map_rec f d env sigma a trm =
match kind trm with
| Cast (c, k, t) ->
let sigma, c' = map_rec env sigma a c in
let sigma, t' = map_rec env sigma a t in
sigma, mkCast (c', k, t')
| Prod (n, t, b) ->
let sigma, t' = map_rec env sigma a t in
let sigma, b' = map_rec (push_local (n, t) env) sigma (d a) b in
sigma, mkProd (n, t', b')
| Lambda (n, t, b) ->
let sigma, t' = map_rec env sigma a t in
let sigma, b' = map_rec (push_local (n, t) env) sigma (d a) b in
sigma, mkLambda (n, t', b')
| LetIn (n, trm, typ, e) ->
let sigma, trm' = map_rec env sigma a trm in
let sigma, typ' = map_rec env sigma a typ in
let sigma, e' = map_rec (push_let_in (n, e, typ) env) sigma (d a) e in
sigma, mkLetIn (n, trm', typ', e')
| App (fu, args) ->
let sigma, fu' = map_rec env sigma a fu in
let sigma, args' =
let map_rec_shallow env sigma a t =
if isLambda t then sigma, t else map_rec env sigma a t
in map_rec_args map_rec_shallow env sigma a args
in sigma, mkApp (fu', args')
| Case (ci, ct, m, bs) ->
let sigma, ct' = map_rec env sigma a ct in
let sigma, m' = map_rec env sigma a m in
let sigma, bs' = map_rec_args map_rec env sigma a bs in
sigma, mkCase (ci, ct', m', bs')
| Fix ((is, i), (ns, ts, ds)) ->
let sigma, ts' = map_rec_args map_rec env sigma a ts in
let sigma, ds' = map_rec_args (fun env sigma a trm -> map_rec_env_fix map_rec d env sigma a ns ts trm) env sigma a ds in (* TODO refactor *)
sigma, mkFix ((is, i), (ns, ts', ds'))
| CoFix (i, (ns, ts, ds)) ->
let sigma, ts' = map_rec_args map_rec env sigma a ts in
let sigma, ds' = map_rec_args (fun env sigma a trm -> map_rec_env_fix map_rec d env sigma a ns ts trm) env sigma a ds in (* TODO refactor *)
sigma, mkCoFix (i, (ns, ts', ds'))
| Proj (p, c) ->
let sigma, c' = map_rec env sigma a c in
sigma, mkProj (p, c')
| _ ->
f env sigma a trm
(*
* Map a function over a term in an environment
* Only apply the function when a proposition is true
* Apply the function eagerly
* Update the environment as you go
* Update the argument of type 'a using the a supplied update function
* Don't recurse into lambda arguments
* Return a new term
*)
let rec map_term_env_if_shallow p f d env sigma a trm =
branch_state
(fun trm sigma -> p env sigma a trm)
(fun trm sigma -> f env sigma a trm)
(fun trm sigma ->
map_term_env_rec_shallow
(map_term_env_if_shallow p f d)
(fun _ sigma _ t -> sigma, t)
d
env
sigma
a
trm)
trm
sigma
(*
* Lazy version of map_term_env_if
*)
let rec map_term_env_if_lazy p f d env sigma a trm =
bind
(fun sigma ->
map_term_env_rec
(map_term_env_if_lazy p f d)
(fun _ sigma _ t -> sigma, t)
d
env
sigma
a
trm)
(branch_state
(fun trm sigma -> p env sigma a trm)
(fun trm sigma -> f env sigma a trm)
ret)
sigma
(*
* Map a function over a term where the environment doesn't matter
* Only apply the function when a proposition is true
* Apply the function eagerly
* Update the argument of type 'a using the a supplied update function
* Return a new term
*)
let map_term_if p f d a trm : types =
snd
(map_term_env_if
(fun _ _ a t -> Evd.empty, p a t)
(fun _ _ a t -> Evd.empty, f a t)
d
empty_env
Evd.empty
a
trm)
(* Lazy version *)
let map_term_if_lazy p f d a trm =
snd
(map_term_env_if_lazy
(fun _ _ a t -> Evd.empty, p a t)
(fun _ _ a t -> Evd.empty, f a t)
d
empty_env
Evd.empty
a
trm)
(*
* Map a function over subterms of a term in an environment
* Only apply the function when a proposition is true
* Apply the function eagerly
* Update the environment as you go
* Update the argument of type 'a using the a supplied update function
* Return all combinations of new terms
*)
let rec map_subterms_env_if p f d env sigma a trm =
branch_state
(fun trm sigma -> p env sigma a trm)
(fun trm sigma -> f env sigma a trm)
(fun trm sigma ->
map_subterms_env_rec
(map_subterms_env_if p f d)
(fun _ sigma _ trm -> sigma, [trm])
d
env
sigma
a
trm)
trm
sigma
(*
* Map a function over subterms of a term in an environment
* Only apply the function when a proposition is true
* Apply the function eagerly, but always recurse
* Update the environment as you go
* Update the argument of type 'a using the a supplied update function
* Return all combinations of new terms
*)
let rec map_subterms_env_if_combs p f d env sigma a trm =
bind
(branch_state
(fun trm sigma -> p env sigma a trm)
(fun trm sigma -> f env sigma a trm)
(fun trm -> ret [trm])
trm)
(flat_map_state
(fun trm sigma ->
map_subterms_env_rec
(map_subterms_env_if_combs p f d)
(fun _ sigma _ trm -> sigma, [trm])
d
env
sigma
a
trm))
sigma
(*
* Like map_term_env_if, but make a list of subterm results
*)
let rec map_term_env_if_list p f d env sigma a trm =
let map_rec = map_term_env_if_list p f d in
let sigma_t, p_holds = p env sigma a trm in
let new_subterms = if p_holds
then [f env sigma_t a trm]
else [] in
let rest = match kind trm with
| Cast (c, k, t) ->
let c' = map_rec env sigma a c in
let t' = map_rec env sigma a t in
List.append c' t'
| Prod (n, t, b) ->
let t' = map_rec env sigma a t in
let b' = map_rec (push_local (n, t) env) sigma (d a) b in
List.append t' b'
| Lambda (n, t, b) ->
let t' = map_rec env sigma a t in
let b' = map_rec (push_local (n, t) env) sigma (d a) b in
List.append t' b'
| LetIn (n, trm, typ, e) ->
let trm' = map_rec env sigma a trm in
let typ' = map_rec env sigma a typ in
let e' = map_rec (push_let_in (n, e, typ) env) sigma (d a) e in
List.append trm' (List.append typ' e')
| App (fu, args) ->
let fu' = map_rec env sigma a fu in
let args' = Array.map (map_rec env sigma a) args in
List.append fu' (List.flatten (Array.to_list args'))
| Case (ci, ct, m, bs) ->
let ct' = map_rec env sigma a ct in
let m' = map_rec env sigma a m in
let bs' = Array.map (map_rec env sigma a) bs in
List.append ct' (List.append m' (List.flatten (Array.to_list bs')))
| Fix ((is, i), (ns, ts, ds)) ->
let ts' = Array.map (map_rec env sigma a) ts in
let ds' = Array.map (map_rec_env_fix map_rec d env sigma a ns ts) ds in
List.append (List.flatten (Array.to_list ts')) (List.flatten (Array.to_list ds'))
| CoFix (i, (ns, ts, ds)) ->
let ts' = Array.map (map_rec env sigma a) ts in
let ds' = Array.map (map_rec_env_fix map_rec d env sigma a ns ts) ds in
List.append (List.flatten (Array.to_list ts')) (List.flatten (Array.to_list ds'))
| Proj (pr, c) ->
map_rec env sigma a c
| _ ->
[] in
List.append new_subterms rest
(*
* Map a function over subterms of a term in an environment
* Only apply the function when a proposition is true
* Apply the function after recursing
* Update the environment as you go
* Update the argument of type 'a using the a supplied update function
* Return all combinations of new terms
*
* TODO redundant calls right now
* TODO rename... confusing different subterm combination stuff in here
*)
let rec map_subterms_env_if_lazy p f d env sigma a trm =
bind
(fun sigma ->
map_subterms_env_rec
(map_subterms_env_if_lazy p f d)
(fun _ sigma _ trm -> sigma, [trm])
d
env
sigma
a
trm)
(flat_map_state
(branch_state
(fun trm sigma -> p env sigma a trm)
(fun trm sigma -> f env sigma a trm)
(fun trm -> ret [trm])))
sigma
(* --- Propositions --- *)
(*
* Like map_term_env_if, but just return true if the proposition is satisfied,
* and false otherwise.
*
* We can make this even more general and just take a combinator
* and a mapping function and so on, in the future.
*)
let rec exists_subterm_env p d env sigma (a : 'a) (trm : types) : evar_map * bool =
let map_rec = exists_subterm_env p d in
branch_state
(fun trm sigma -> p env sigma a trm)
(fun _ -> ret true)
(fun trm sigma ->
match kind trm with
| Cast (c, k, t) ->
let sigma, c' = map_rec env sigma a c in
let sigma, t' = map_rec env sigma a t in
sigma, c' || t'
| Prod (n, t, b) ->
let sigma, t' = map_rec env sigma a t in
let sigma, b' = map_rec (push_local (n, t) env) sigma (d a) b in
sigma, t' || b'
| Lambda (n, t, b) ->
let sigma, t' = map_rec env sigma a t in
let sigma, b' = map_rec (push_local (n, t) env) sigma (d a) b in
sigma, t' || b'
| LetIn (n, trm, typ, e) ->
let sigma, trm' = map_rec env sigma a trm in
let sigma, typ' = map_rec env sigma a typ in
let sigma, e' = map_rec (push_let_in (n, e, typ) env) sigma (d a) e in
sigma, trm' || typ' || e'
| App (fu, args) ->
let sigma, fu' = map_rec env sigma a fu in
let sigma, args' = exists_args map_rec env sigma a args in
sigma, fu' || args'
| Case (ci, ct, m, bs) ->
let sigma, ct' = map_rec env sigma a ct in
let sigma, m' = map_rec env sigma a m in
let sigma, bs' = exists_args map_rec env sigma a bs in
sigma, ct' || m' || bs'
| Fix ((is, i), (ns, ts, ds)) ->
let sigma, ts' = exists_args map_rec env sigma a ts in
let sigma, ds' = exists_args map_rec env sigma a ds in
sigma, ts' || ds'
| CoFix (i, (ns, ts, ds)) ->
let sigma, ts' = exists_args map_rec env sigma a ts in
let sigma, ds' = exists_args map_rec env sigma a ds in
sigma, ts' || ds'
| Proj (pr, c) ->
map_rec env sigma a c
| _ ->
sigma, false)
trm
sigma
(* exists_subterm_env with an empty environment *)
let exists_subterm p d a t =
snd
(exists_subterm_env
(fun _ _ a t -> Evd.empty, p a t)
d
empty_env
Evd.empty
a
t)
(* all constant subterms that match a stateless predicate *)
let all_const_subterms p d a t =
List.map
snd
(List.map
snd
(map_term_env_if_list
(fun _ sigma a t -> sigma, isConst t && p a t)
(fun en sigma _ t -> sigma, (en, t))
d
empty_env
Evd.empty
a
t))
(* --- Variations --- *)
(* map env without any a *)
let map_unit_env mapper p f env sigma trm =
mapper
(fun en sigma _ t -> p en sigma t)
(fun en sigma _ t -> f en sigma t)
(fun _ -> ())
env
sigma
()
trm
(* map without any a *)
let map_unit mapper p f trm =
mapper (fun _ t -> p t) (fun _ t -> f t) (fun _ -> ()) () trm
(* Some simple combinations *)
let map_unit_env_if = map_unit_env map_term_env_if
let map_unit_env_if_lazy = map_unit_env map_term_env_if_lazy
let map_unit_if = map_unit map_term_if
let map_unit_if_lazy = map_unit map_term_if_lazy