-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathzooming.ml
202 lines (170 loc) · 5.4 KB
/
zooming.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
(*
* Zooming into environments and reconstructing terms from environments
*)
open Constr
open Environ
open Apputils
open Funutils
open Envutils
open Contextutils
open Debruijn
open Sigmautils
open Evd
open Names
(* --- Zooming --- *)
(* Zoom into a term *)
let rec zoom_n_prod env npm typ : env * types =
if npm = 0 then
(env, typ)
else
match kind typ with
| Prod (n1, t1, b1) ->
zoom_n_prod (push_local (n1, t1) env) (npm - 1) b1
| _ ->
failwith "more parameters expected"
(* Lambda version *)
let zoom_n_lambda env npm trm : env * types =
let (env, typ) = zoom_n_prod env npm (lambda_to_prod trm) in
(env, prod_to_lambda typ)
(* Zoom all the way into a lambda term *)
let rec zoom_lambda_term (env : env) (trm : types) : env * types =
match kind trm with
| Lambda (n, t, b) ->
zoom_lambda_term (push_local (n, t) env) b
| _ ->
(env, trm)
(* Zoom all the way into a product type *)
let rec zoom_product_type (env : env) (typ : types) : env * types =
match kind typ with
| Prod (n, t, b) ->
zoom_product_type (push_local (n, t) env) b
| _ ->
(env, typ)
(* Zoom into a lambda term collecting names, stopping short
of the last specified number of arguments. *)
let zoom_lambda_names env except trm : env * types * Id.t list =
let rec aux env limit trm =
match limit with
| 0 -> (env, trm, [])
| limit ->
match kind trm with
| Lambda (n, t, b) ->
let name = fresh_name env n in
let env' = push_local (Name name, t) env in
let env, trm, names =
aux env' (limit - 1) b in
(env, trm, name :: names)
| _ ->
(env, trm, []) in
aux env (arity trm - except) trm
(* Zoom into the environment *)
let zoom_env zoom (env : env) (trm : types) : env =
fst (zoom env trm)
(* Zoom into the term *)
let zoom_term zoom (env : env) (trm : types) : types =
snd (zoom env trm)
(* Get the last argument of a sigma *)
let zoom_sig_lambda t =
last_arg t
(* Get the application from the body of the last argument of a sigma *)
let zoom_sig_app t =
let lambda = zoom_sig_lambda t in
zoom_term zoom_lambda_term empty_env lambda
(* Get the very first function from the body of the last argument of a sigma *)
let zoom_sig t =
first_fun (zoom_sig_app t)
(* zoom_sig if t actually applies sigT *)
let zoom_if_sig_lambda t =
if applies sigT t then
zoom_sig_lambda t
else
t
(* zoom_sig_app if actually applies sigT *)
let zoom_if_sig_app t =
if applies sigT t then
zoom_sig_app t
else
t
(* zoom if t actually applies sigT *)
let zoom_if_sig t =
if applies sigT t then
zoom_sig t
else
t
(* --- Reconstruction --- *)
(* Reconstruct a lambda from an environment, but stop when i are left *)
let rec reconstruct_lambda_n (env : env) (b : types) (i : int) : types =
if nb_rel env = i then
b
else
let (n, _, t) = CRD.to_tuple @@ lookup_rel 1 env in
let env' = pop_rel_context 1 env in
reconstruct_lambda_n env' (mkLambda (n, t, b)) i
(* Reconstruct a lambda from an environment *)
let reconstruct_lambda (env : env) (b : types) : types =
reconstruct_lambda_n env b 0
(* Like reconstruct_lambda_n, but first skip j elements *)
let rec reconstruct_lambda_n_skip (env : env) (b : types) (i : int) (j : int) : types =
if nb_rel env = i then
b
else
let (n, _, t) = CRD.to_tuple @@ lookup_rel 1 env in
let env' = pop_rel_context 1 env in
if j <= 0 then
reconstruct_lambda_n_skip env' (mkLambda (n, t, b)) i j
else
reconstruct_lambda_n_skip env' (unshift b) (i - 1) (j - 1)
(* Reconstruct a product from an environment, but stop when i are left *)
let rec reconstruct_product_n (env : env) (b : types) (i : int) : types =
if nb_rel env = i then
b
else
let (n, _, t) = CRD.to_tuple @@ lookup_rel 1 env in
let env' = pop_rel_context 1 env in
reconstruct_product_n env' (mkProd (n, t, b)) i
(* Reconstruct a product from an environment *)
let reconstruct_product (env : env) (b : types) : types =
reconstruct_product_n env b 0
(* Like reconstruct_product_n, but first skip j elements *)
let rec reconstruct_product_n_skip (env : env) (b : types) (i : int) (j : int) : types =
if nb_rel env = i then
b
else
let (n, _, t) = CRD.to_tuple @@ lookup_rel 1 env in
let env' = pop_rel_context 1 env in
if j <= 0 then
reconstruct_product_n_skip env' (mkProd (n, t, b)) i j
else
reconstruct_product_n_skip env' (unshift b) (i - 1) (j - 1)
(* --- Higher-order zooming --- *)
(*
* Zoom in and apply a function
*)
let in_body zoom f env sigma trm =
let (env_body, trm_body) = zoom env trm in
f env_body sigma trm_body
let in_lambda_body f env sigma trm = in_body zoom_lambda_term f env sigma trm
(*
* Zoom in, apply a function, then reconstruct the result
*)
let zoom_apply zoom reconstruct f =
in_body
zoom
(fun env sigma trm ->
let sigma, trm = f env sigma trm in
sigma, reconstruct env trm)
let zoom_apply_lambda =
zoom_apply zoom_lambda_term reconstruct_lambda
let zoom_apply_lambda_empty f trm =
snd
(zoom_apply
zoom_lambda_term
reconstruct_lambda
(fun _ sigma trm -> sigma, f trm)
empty_env
Evd.empty
trm)
let zoom_apply_lambda_n n =
zoom_apply zoom_lambda_term (fun e t -> reconstruct_lambda_n e t n)
let zoom_apply_lambda_n_skip n skip =
zoom_apply zoom_lambda_term (fun e t -> reconstruct_lambda_n_skip e t n skip)