-
Notifications
You must be signed in to change notification settings - Fork 43
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
AttributeError: Can't pickle local object 'partialclass.<locals>.NewCls' #54
Comments
This appears to be a limitation of pickle and windows. Specifically, here we dynamically define/overwrite the init function inside a class and pickle (in windows) does not like that. So I think the following should work instead (replace the above linked function with the following one): def partialclass(cls, *args, **kwargs):
class NewCls(cls):
def __init__(self, *more_args, **more_kwargs):
full_args = args + more_args
full_kwargs = {**kwargs, **more_kwargs}
super().__init__(*full_args, **full_kwargs)
return NewCls I have not tested it but this should work. This should also resolve #45 |
Unfortunately, I can't test this because I don't have a windows machine. Yes, the project was written and tested in Linux (specifically Ubuntu) so moving to Linux is one solution. |
I have the same problem, is there a solution now? |
Hey when i run it on windows , i got this error , how to solve it can u help please
F:\SSCAmea\RVT-master>python train.py model=rnndet dataset=gen1 dataset.path=F:\SSCAmea\gen1 wandb.project_name=RVT wandb.group_name=gen1 +experiment/gen1=base.yaml hardware.gpus=0 batch_size.train=8 batch_size.eval=8 hardware.num_workers.train=6 hardware.num_workers.eval=2
Using python-based detection evaluation
Set MaxViTRNN backbone (height, width) to (256, 320)
Set partition sizes: (8, 10)
Set num_classes=2 for detection head
------ Configuration ------
reproduce:
seed_everything: null
deterministic_flag: false
benchmark: false
training:
precision: 16
max_epochs: 10000
max_steps: 400000
learning_rate: 0.0002
weight_decay: 0
gradient_clip_val: 1.0
limit_train_batches: 1.0
lr_scheduler:
use: true
total_steps: ${..max_steps}
pct_start: 0.005
div_factor: 20
final_div_factor: 10000
validation:
limit_val_batches: 1.0
val_check_interval: null
check_val_every_n_epoch: 1
batch_size:
train: 8
eval: 8
hardware:
num_workers:
train: 6
eval: 2
gpus: 0
dist_backend: nccl
logging:
ckpt_every_n_epochs: 1
train:
metrics:
compute: false
detection_metrics_every_n_steps: null
log_model_every_n_steps: 5000
log_every_n_steps: 500
high_dim:
enable: true
every_n_steps: 5000
n_samples: 4
validation:
high_dim:
enable: true
every_n_epochs: 1
n_samples: 8
wandb:
wandb_runpath: null
artifact_name: null
artifact_local_file: null
resume_only_weights: false
group_name: gen1
project_name: RVT
dataset:
name: gen1
path: F:\SSCAmea\gen1
train:
sampling: mixed
random:
weighted_sampling: false
mixed:
w_stream: 1
w_random: 1
eval:
sampling: stream
data_augmentation:
random:
prob_hflip: 0.5
rotate:
prob: 0
min_angle_deg: 2
max_angle_deg: 6
zoom:
prob: 0.8
zoom_in:
weight: 8
factor:
min: 1
max: 1.5
zoom_out:
weight: 2
factor:
min: 1
max: 1.2
stream:
prob_hflip: 0.5
rotate:
prob: 0
min_angle_deg: 2
max_angle_deg: 6
zoom:
prob: 0.5
zoom_out:
factor:
min: 1
max: 1.2
ev_repr_name: stacked_histogram_dt=50_nbins=10
sequence_length: 21
resolution_hw:
downsample_by_factor_2: false
only_load_end_labels: false
model:
name: rnndet
backbone:
name: MaxViTRNN
compile:
enable: false
args:
mode: reduce-overhead
input_channels: 20
enable_masking: false
partition_split_32: 1
embed_dim: 64
dim_multiplier:
num_blocks:
T_max_chrono_init:
stem:
patch_size: 4
stage:
downsample:
type: patch
overlap: true
norm_affine: true
attention:
use_torch_mha: false
partition_size:
dim_head: 32
attention_bias: true
mlp_activation: gelu
mlp_gated: false
mlp_bias: true
mlp_ratio: 4
drop_mlp: 0
drop_path: 0
ls_init_value: 1.0e-05
lstm:
dws_conv: false
dws_conv_only_hidden: true
dws_conv_kernel_size: 3
drop_cell_update: 0
in_res_hw:
fpn:
name: PAFPN
compile:
enable: false
args:
mode: reduce-overhead
depth: 0.67
in_stages:
depthwise: false
act: silu
head:
name: YoloX
compile:
enable: false
args:
mode: reduce-overhead
depthwise: false
act: silu
num_classes: 2
postprocess:
confidence_threshold: 0.1
nms_threshold: 0.45
Disabling PL seed everything because of unresolved issues with shuffling during training on streaming datasets
new run: generating id ba4dy0ts
wandb: Currently logged in as: adeelferozmirza1 (adeelferozmirza). Use
wandb login --relogin
to force reloginwandb: Tracking run with wandb version 0.17.3
wandb: Run data is saved locally in F:\SSCAmea\RVT-master\wandb\run-20240627_152506-ba4dy0ts
wandb: Run
wandb offline
to turn off syncing.wandb: Syncing run golden-feather-1
wandb: View project at https://wandb.ai/adeelferozmirza/RVT
wandb: View run at https://wandb.ai/adeelferozmirza/RVT/runs/ba4dy0ts
wandb: logging graph, to disable use
wandb.watch(log_graph=False)
Using 16bit native Automatic Mixed Precision (AMP)
Trainer already configured with model summary callbacks: [<class 'pytorch_lightning.callbacks.model_summary.ModelSummary'>]. Skipping setting a default
ModelSummary
callback.GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Trainer(limit_train_batches=1.0)
was configured so 100% of the batches per epoch will be used..Trainer(limit_val_batches=1.0)
was configured so 100% of the batches will be used..[Train] Local batch size for:
stream sampling: 4
random sampling: 4
[Train] Local num workers for:
stream sampling: 3
random sampling: 3
creating rnd access train datasets: 1458it [00:03, 419.82it/s]
creating streaming train datasets: 1458it [00:09, 160.31it/s]
num_full_sequences=317
num_splits=1141
num_split_sequences=5492
creating streaming val datasets: 429it [00:01, 399.27it/s]
num_full_sequences=429
num_splits=0
num_split_sequences=0
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
| Name | Type | Params
0 | mdl | YoloXDetector | 18.5 M
1 | mdl.backbone | RNNDetector | 12.8 M
2 | mdl.fpn | YOLOPAFPN | 3.9 M
3 | mdl.yolox_head | YOLOXHead | 1.9 M
18.5 M Trainable params
0 Non-trainable params
18.5 M Total params
37.073 Total estimated model params size (MB)
Sanity Checking: 0it [00:00, ?it/s]C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\trainer\connectors\data_connector.py:224: PossibleUserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the
num_workers
argument(try 20 which is the number of cpus on this machine) in the
DataLoader` init to improve performance.rank_zero_warn(
Using python-based detection evaluation
Using python-based detection evaluation
Sanity Checking DataLoader 0: 0%| | 0/2 [00:00<?, ?it/s]C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\torch\functional.py:512: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at C:\cb\pytorch_1000000000000\work\aten\src\ATen\native\TensorShape.cpp:3588.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
Epoch 0: : 0it [00:00, ?it/s]Using python-based detection evaluation
Using python-based detection evaluation
Using python-based detection evaluation
== Timing statistics ==
== Timing statistics ==
Error executing job with overrides: ['model=rnndet', 'dataset=gen1', 'dataset.path=F:\SSCAmea\gen1', 'wandb.project_name=RVT', 'wandb.group_name=gen1', '+experiment/gen1=base.yaml', 'hardware.gpus=0', 'batch_size.train=8', 'batch_size.eval=8', 'hardware.num_workers.train=6', 'hardware.num_workers.eval=2']
Traceback (most recent call last):
File "F:\SSCAmea\RVT-master\train.py", line 138, in main
trainer.fit(model=module, ckpt_path=ckpt_path, datamodule=data_module)
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\trainer\trainer.py", line 603, in fit
call._call_and_handle_interrupt(
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\trainer\call.py", line 38, in _call_and_handle_interrupt
return trainer_fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\trainer\trainer.py", line 645, in _fit_impl
self._run(model, ckpt_path=self.ckpt_path)
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\trainer\trainer.py", line 1098, in _run
results = self._run_stage()
^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\trainer\trainer.py", line 1177, in _run_stage
self._run_train()
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\trainer\trainer.py", line 1200, in _run_train
self.fit_loop.run()
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\loops\loop.py", line 199, in run
self.advance(*args, **kwargs)
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\loops\fit_loop.py", line 267, in advance
self._outputs = self.epoch_loop.run(self._data_fetcher)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\loops\loop.py", line 194, in run
self.on_run_start(*args, **kwargs)
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\loops\epoch\training_epoch_loop.py", line 161, in on_run_start
_ = iter(data_fetcher) # creates the iterator inside the fetcher
^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\utilities\fetching.py", line 179, in iter
self._apply_patch()
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\utilities\fetching.py", line 120, in _apply_patch
apply_to_collections(self.loaders, self.loader_iters, (Iterator, DataLoader), _apply_patch_fn)
^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\utilities\fetching.py", line 156, in loader_iters
return self.dataloader_iter.loader_iters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\trainer\supporters.py", line 555, in loader_iters
self._loader_iters = self.create_loader_iters(self.loaders)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\trainer\supporters.py", line 595, in create_loader_iters
return apply_to_collection(loaders, Iterable, iter, wrong_dtype=(Sequence, Mapping))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\lightning_utilities\core\apply_func.py", line 52, in apply_to_collection
return _apply_to_collection_slow(
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\lightning_utilities\core\apply_func.py", line 104, in _apply_to_collection_slow
v = _apply_to_collection_slow(
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\lightning_utilities\core\apply_func.py", line 96, in _apply_to_collection_slow
return function(data, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\pytorch_lightning\trainer\supporters.py", line 177, in iter
self._loader_iter = iter(self.loader)
^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\torch\utils\data\dataloader.py", line 439, in iter
return self._get_iterator()
^^^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\torch\utils\data\dataloader.py", line 387, in _get_iterator
return _MultiProcessingDataLoaderIter(self)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\torch\utils\data\dataloader.py", line 1040, in init
w.start()
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\multiprocessing\process.py", line 121, in start
self._popen = self._Popen(self)
^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\multiprocessing\context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\multiprocessing\context.py", line 336, in _Popen
return Popen(process_obj)
^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\multiprocessing\popen_spawn_win32.py", line 95, in init
reduction.dump(process_obj, to_child)
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\torch\utils\data\datapipes\datapipe.py", line 172, in reduce_ex
return super().reduce_ex(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\site-packages\torch\utils\data\datapipes\datapipe.py", line 347, in getstate
value = pickle.dumps(self._datapipe)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AttributeError: Can't pickle local object 'partialclass..NewCls'
Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.
Using python-based detection evaluation
Traceback (most recent call last):
File "", line 1, in
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\multiprocessing\spawn.py", line 122, in spawn_main
exitcode = _main(fd, parent_sentinel)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\adeel\anaconda3\envs\events_signals\Lib\multiprocessing\spawn.py", line 132, in _main
self = reduction.pickle.load(from_parent)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
EOFError: Ran out of input
== Timing statistics ==
wandb: View run golden-feather-1 at: https://wandb.ai/adeelferozmirza/RVT/runs/ba4dy0ts
wandb: View project at: https://wandb.ai/adeelferozmirza/RVT
wandb: Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 1 other file(s)
wandb: Find logs at: .\wandb\run-20240627_152506-ba4dy0ts\logs
wandb: WARNING The new W&B backend becomes opt-out in version 0.18.0; try it out with
wandb.require("core")
! See https://wandb.me/wandb-core for more information.== Timing statistics ==
Epoch 0: : 0it [00:28, ?it/s]
The text was updated successfully, but these errors were encountered: