diff --git a/tex/alg-NT/finite-field.tex b/tex/alg-NT/finite-field.tex index e7b8fa6f..814f1579 100644 --- a/tex/alg-NT/finite-field.tex +++ b/tex/alg-NT/finite-field.tex @@ -182,6 +182,7 @@ \section{The Galois theory of finite fields} \[ \sigma_p(x) = x^p \] is an automorphism, and moreover fixes $\FF_p$. \end{theorem} +This is called the Frobenius automorphism, and will re-appear later on in \Cref{ch:frobenius-element}. \begin{proof} It's a homomorphism since it fixes $1$, respects multiplication, diff --git a/tex/alg-NT/frobenius.tex b/tex/alg-NT/frobenius.tex index 910b9c78..a3e3e7a3 100644 --- a/tex/alg-NT/frobenius.tex +++ b/tex/alg-NT/frobenius.tex @@ -1,4 +1,4 @@ -\chapter{The Frobenius element} +\chapter{The Frobenius element}\label{ch:frobenius-element} Throughout this chapter $K/\QQ$ is a Galois extension with Galois group $G$, $p$ is an \emph{unramified} rational prime in $K$, and $\kp$ is a prime above it. Picture: @@ -12,6 +12,12 @@ \chapter{The Frobenius element} \QQ & \supset & \ZZ & (p) & \FF_p \end{tikzcd} \end{center} + +We recall that the $p$-th power map $\sigma \colon \FF_{p^f} \to \FF_{p^f}$ is an automorphism, and it's called the Frobenius map on $\FF_{p^f}$. +We can try to extend this map to a $K \to K$ map by $\sigma(x) = x^p$, unfortunately this doesn't make it a field automorphism. + +Surprisingly, it is nevertheless possible to extend this to some field automorphism $\sigma \in \Gal(K/\QQ)$. + If $p$ is unramified, then one can show there is a unique $\sigma \in \Gal(K/\QQ)$ such that $\sigma(\alpha) \equiv \alpha^p \pmod{\kp}$ for every prime $p$. @@ -24,7 +30,7 @@ \section{Frobenius elements} Assume $K/\QQ$ is Galois with Galois group $G$. Let $p$ be a rational prime unramified in $K$, and $\kp$ a prime above it. There is a \emph{unique} element $\Frob_\kp \in G$ - with the property that + with the property that, for all $\alpha \in \OO_K$, \[ \Frob_\kp(\alpha) \equiv \alpha^{p} \pmod{\kp}. \] It is called the \vocab{Frobenius element} at $\kp$, and has order $f$. \end{theorem} diff --git a/tex/alg-NT/ramification.tex b/tex/alg-NT/ramification.tex index bc6b6010..8befa9bc 100644 --- a/tex/alg-NT/ramification.tex +++ b/tex/alg-NT/ramification.tex @@ -262,22 +262,27 @@ \section{(Optional) Decomposition and inertia groups} How are $\Gal\left( (\OO_K/\kp) / \FF_p \right)$ and $\Gal(K/\QQ)$ related? \end{quote} -Absurdly enough, there is an explicit answer: -\textbf{it's just the stabilizer of $\kp$, at least when -$p$ is unramified}. + +First, every $\sigma \in \Gal(K/\QQ)$ induces an automorphism of $\OO_K$, which induces a map +$\OO_K \to \OO_K/\kp$ by +\[ \alpha \mapsto \sigma(\alpha) \pmod\kp. \] +For this to induce a map in $\Gal\left( (\OO_K/\kp) / \FF_p \right)$, it's necessary that $\sigma(\kp) \subseteq \kp$. So, we consider the subset of automorphisms that fixes $\kp$: \begin{definition} Let $D_\kp \subseteq \Gal(K/\QQ)$ be the stabilizer of $\kp$, that is \[ D_\kp \defeq \left\{ \sigma \in \Gal(K/\QQ) \mid \sigma\kp = \kp \right\}. \] We say $D_\kp$ is the \vocab{decomposition group} of $\kp$. \end{definition} -Then, every $\sigma \in D_\kp$ induces an automorphism of $\OO_K / \kp$ by -\[ \alpha \mapsto \sigma(\alpha) \pmod\kp. \] +Note that this definition is in fact equivalent to the set of $\sigma$ such that $\sigma(\kp) \subseteq \kp$, +because a field isomorphism fixes the ideal norm $\Norm(\kp)$. + So there's a natural map \[ D_\kp \taking\theta \Gal\left( (\OO_K/\kp) / \FF_p \right) \] by declaring $\theta(\sigma)$ to just be ``$\sigma \pmod \kp$''. The fact that $\sigma \in D_\kp$ (i.e.\ $\sigma$ fixes $\kp$) ensures this map is well-defined. +Surprisingly, every element of $\Gal\left( (\OO_K/\kp) / \FF_p \right)$ arises this way from some field automorphism of $K$. + \begin{theorem}[Decomposition group and Galois group] \label{thm:decomposition} Define $\theta$ as above. Then