From ae78d403b38c9713c550b2b3d34a3cf2e02b76d4 Mon Sep 17 00:00:00 2001 From: Evan Chen Date: Wed, 10 Apr 2024 18:47:36 -0400 Subject: [PATCH] fix(taylor): typo, (p-R,P+R) instead of (-R,R) --- tex/calculus/taylor.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/tex/calculus/taylor.tex b/tex/calculus/taylor.tex index 0df1c7ad..578107e8 100644 --- a/tex/calculus/taylor.tex +++ b/tex/calculus/taylor.tex @@ -271,9 +271,9 @@ \section{Analytic functions} \begin{itemize} \ii the Taylor series of $f$ at $p$ has radius of convergence $R > 0$; \emph{and} \ii that Taylor series actually does converge to the value $f(x)$ - for every input $x \in (-R,R)$ within the radius of convergence. + for every input $x \in (p-R,p+R)$ within the radius of convergence. \end{itemize} - Then $f$ is analytic on $(-R, R)$. + Then $f$ is analytic on $(p-R, p+R)$. \label{prop:taylor_series_are_analytic} \end{proposition} This result is nontrivial because \emph{a priori} we only know $f$ is analytic at $p$;