难度:非常简单
现有一份 n + m 次投掷单个 六面 骰子的观测数据,骰子的每个面从 1 到 6 编号。观测数据中缺失了 n 份,你手上只拿到剩余 m 次投掷的数据。幸好你有之前计算过的这 n + m 次投掷数据的 平均值 。
给你一个长度为 m 的整数数组 rolls ,其中 rolls[i] 是第 i 次观测的值。同时给你两个整数 mean 和 n 。
返回一个长度为 n 的数组,包含所有缺失的观测数据,且满足这 n + m 次投掷的 平均值 是 mean 。如果存在多组符合要求的答案,只需要返回其中任意一组即可。如果不存在答案,返回一个空数组。
k 个数字的 平均值 为这些数字求和后再除以 k 。
注意 mean 是一个整数,所以 n + m 次投掷的总和需要被 n + m 整除。
输入:rolls = [3,2,4,3], mean = 4, n = 2
输出:[6,6]
解释:所有 n + m 次投掷的平均值是 (3 + 2 + 4 + 3 + 6 + 6) / 6 = 4 。
输入:rolls = [1,5,6], mean = 3, n = 4
输出:[2,3,2,2]
解释:所有 n + m 次投掷的平均值是 (1 + 5 + 6 + 2 + 3 + 2 + 2) / 7 = 3 。
输入:rolls = [1,2,3,4], mean = 6, n = 4
输出:[]
解释:无论丢失的 4 次数据是什么,平均值都不可能是 6 。
输入:rolls = [1], mean = 3, n = 1
输出:[5]
解释:所有 n + m 次投掷的平均值是 (1 + 5) / 2 = 3 。
m == rolls.length
1 <= n, m <= 105
1 <= rolls[i], mean <= 6
/**
* @description: 时间复杂度 O(N + M) 空间复杂度 O(N)
* @return {*}
* @param {number} rolls
* @param {number} mean
* @param {number} n
*/
export function missingRolls(rolls: number[], mean: number, n: number): number[] {
const m = rolls.length; const arr: number[] = []
let sum = mean * (n + m)
for (let i = 0; i < m; i++)
sum -= rolls[i]
for (let i = 0; i < n; i++) {
const temp = Math.floor(sum / (n - i))
if (temp > 6 || temp < 1)
return []
arr.push(temp)
sum -= temp
}
return arr
}