-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDMM.h
223 lines (192 loc) · 5.17 KB
/
DMM.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#pragma once
#include "timedef.h"
#include <cublas_v2.h>
typedef unsigned int uint;
template<typename FLOAT_T>
struct DenseMatrix {
int R, C;
FLOAT_T* v;
DenseMatrix(int R, int C) :R(R), C(C) {
v = (FLOAT_T*)malloc(R * C * sizeof(FLOAT_T));
for (int i = 0; i < R * C; i++) {
v[i] = randreal();
// v[i]=(FLOAT_T)1;
// v[i]=(i/C);
}
}
void del() {
free(v);
}
void clear() {
for (int i = 0; i < R * C; i++) v[i] = 0;
}
FLOAT_T* operator[](int i) {
return v + i * C;
}
void println() {
cout << "[";
for (int i = 0; i < R; i++) {
cout << '[';
for (int j = 0; j < C; j++) {
cout << v[i * C + j];
if (j == C - 1) {
if (i == R - 1) cout << "]]\n";
else cout << "],\n";
}
else cout << ",";
}
}
cout << "--------------------------------------\n";
}
void print() {
cout << "[";
for (int i = 0; i < R; i++) {
cout << '[';
for (int j = 0; j < C; j++) {
cout << v[i * C + j];
if (j == C - 1) {
if (i == R - 1) cout << "]]";
else cout << "],";
}
else cout << ",";
}
}
cout << "--------------------------------------\n";
}
void printErr() {
FLOAT_T s = 0;
for (int i = 0; i < R; i++)for (int j = 0; j < C; j++) {
s += fabs(v[i * C + j]);
}
cout << std::fixed << std::setprecision(5) << "sum=" << s << '\n';
}
void printErr(const DenseMatrix& d) {
FLOAT_T s = 0;
for (int i = 0; i < R; i++)for (int j = 0; j < C; j++) {
s += fabs(v[i * C + j] - d.v[i * C + j]);
}
cout << std::fixed << std::setprecision(5) << "sum=" << s << '\n';
}
};
__global__ void DenseMatMul(double* a, double* b, double* c, int n, int k, int m) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
int j = blockDim.y * blockIdx.y + threadIdx.y;
if (i < n && j < m) {
double* val = c + i * m + j;
*val = 0;
for (int l = 0; l < k; l++) {
*val += a[i * k + l] * b[l * m + j];
}
}
}
template<uint block_size>
__global__ void DenseMatMulBlock(double* a, double* b, double* c, int n, int k, int m) {
int blockX = blockIdx.x;
int blockY = blockIdx.y;
int lux = blockX * block_size;
int luy = blockY * block_size;
int totala = n * k;
int totalb = k * m;
int ti = threadIdx.x, tj = threadIdx.y;
double val = 0;
for (int d = 0; d < k; d += block_size) {
__shared__ double As[block_size][block_size];
__shared__ double Bs[block_size][block_size];
int offa = lux * k + d;
int offb = d * m + luy;
double* astart = a + offa;
double* bstart = b + offb;
if (offa + ti * k + tj < totala) As[ti][tj] = astart[ti * k + tj];
if (offb + ti * m + tj < totalb) Bs[ti][tj] = bstart[ti * m + tj];
__syncthreads();
int eu = block_size < k - d ? block_size : k - d;
for (int e = 0; e < eu; e++) {
val += As[ti][e] * Bs[e][tj];
}
__syncthreads();
}
double* cstart = c + lux * m + luy;
if (lux + ti < n && luy + tj < m) {
cstart[ti * m + tj] = val;
}
}
/*
warmUpTime:0
#
805128192 805128192 805128192
start multiplication
multiplication:0
copy back time:96735
yes
*/
void DenseMatMul(DenseMatrix<double> A, DenseMatrix<double> B, DenseMatrix<double> C) {
double t0, t1, t2;
int N = A.R, K = A.C, M = B.C;
int size_a = N * K * sizeof(double);
int size_b = K * M * sizeof(double);
int size_c = N * M * sizeof(double);
double* a;
double* b;
double* c;
cout << "#\n";
cout << size_a << ' ' << size_b << ' ' << size_c << endl;
cudaMalloc(&a, size_a);
cudaMalloc(&b, size_b);
cudaMalloc(&c, size_c);
if (!a) {
cout << "!a\n";
return;
}
if (!b) {
cout << "!b\n";
return;
}
if (!c) {
cout << "!c\n";
return;
}
cudaMemcpy(a, A.v, size_a, cudaMemcpyHostToDevice);
cudaMemcpy(b, B.v, size_b, cudaMemcpyHostToDevice);
const int block_size = 32;
int BX = (N + block_size - 1) / block_size, BY = (M + block_size - 1) / block_size;
dim3 thread_nums(block_size, block_size);
dim3 block_nums(BX, BY);
cout << "start multiplication\n";
t0 = time();
DenseMatMulBlock<block_size> << <block_nums, thread_nums >> > (a, b, c, N, K, M);
t1 = time();
cout << "multiplication:" << t1 - t0 << endl;
cudaMemcpy(C.v, c, size_c, cudaMemcpyDeviceToHost);
t2 = time();
cout << "copy back time:" << t2 - t1 << endl;
cudaFree(a);
cudaFree(b);
cudaFree(c);
}
void check(DenseMatrix<double> A, DenseMatrix<double> B, DenseMatrix<double> C) {
cublasHandle_t handle;
cublasCreate(&handle);
double alpha = 1.0, beta = -1.0;
double* a;
double* b;
double* c;
int N = A.R;
int K = A.C;
int M = B.C;
cout << M << " " << K << ' ' << N << endl;
int size_a = N * K * sizeof(double);
int size_b = K * M * sizeof(double);
int size_c = N * M * sizeof(double);
cudaMalloc(&a, size_a);
cudaMalloc(&b, size_b);
cudaMalloc(&c, size_c);
cudaMemcpy(a, A.v, size_a, cudaMemcpyHostToDevice);
cudaMemcpy(b, B.v, size_b, cudaMemcpyHostToDevice);
cudaMemcpy(c, C.v, size_c, cudaMemcpyHostToDevice);
cublasDgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, M, N, K, &alpha, b, M, a, K, &beta, c, M);
cublasDestroy(handle);
cudaMemcpy(C.v, c, size_c, cudaMemcpyDeviceToHost);
cudaFree(a);
cudaFree(b);
cudaFree(c);
}