Skip to content

Latest commit

 

History

History
338 lines (266 loc) · 12.8 KB

README.md

File metadata and controls

338 lines (266 loc) · 12.8 KB

Autonomous_Navigation_System

→ 📥 Install dependencies

Before installing the necessary dependencies, remember to source the appropriate ROS2 environment for your ROS2 version. This ensures the correct packages are installed for your distribution.

#fundamental libraries
sudo apt update
sudo apt-get install libeigen3-dev
sudo apt install libpcl-dev
sudo apt-get install libpcap-dev
sudo apt install can-utils
sudo apt-get install libqt5serialport5-dev

sudo apt-get install libpugixml-dev
sudo apt-get install libgeographic-dev geographiclib-tools


#ros2 packages
sudo apt install ros-$ROS_DISTRO-joint-state-publisher-gui
sudo apt install ros-$ROS_DISTRO-xacro
sudo apt-get install ros-$ROS_DISTRO-pcl-ros
sudo apt install ros-$ROS_DISTRO-vision-msgs
sudo apt install ros-$ROS_DISTRO-perception-pcl
sudo apt install ros-$ROS_DISTRO-pcl-msgs
sudo apt install ros-$ROS_DISTRO-vision-opencv
sudo apt install ros-$ROS_DISTRO-xacro
sudo apt install ros-$ROS_DISTRO-velodyne-msgs
sudo apt install ros-$ROS_DISTRO-diagnostic-updater
#sudo apt install ros-$ROS_DISTRO-lanelet2 (no longer required because in the repo is a custom repo)
sudo apt install ros-$ROS_DISTRO-color-util

#GTSAM librari for LIO-SAM
sudo add-apt-repository ppa:borglab/gtsam-release-4.1
sudo apt update
sudo apt install libgtsam-dev libgtsam-unstable-dev

→ 📦 Install github repository

Clone the GitHub repository into the ros2_ws/src/Autonomous_Navigation_System/ folder.

# LIO SAM
git clone https://github.com/TixiaoShan/LIO-SAM.git
cd LIO-SAM/
git checkout ros2
cd ..

# ndt opm ros2
git clone https://github.com/rsasaki0109/ndt_omp_ros2

# for LIDAR localition
git clone https://github.com/rsasaki0109/lidar_localization_ros2.git

# for velodyne drivers
git clone https://github.com/ros-drivers/velodyne.git
cd velodyne
git checkout humble-devel
cd ..

# for the vectornav package
git clone https://github.com/dawonn/vectornav.git -b ros2

# for the polygon represetation in rviz2 (NO LONGER REQUIERD)
# git clone https://github.com/MetroRobots/polygon_ros.git


git clone https://github.com/KIT-MRT/mrt_cmake_modules.git

→ 📢 Code Modifications Before colcon build

Before building the package, make the following changes to the file lidar_localization_component.cpp located in the src directory of lidar_localization_ros2. These adjustments will modify the default subscriber topics to match the correct topics of the car. Navigate to lidar_localization_ros2/src/lidar_localization_component.cpp and change the lines 234 and 238 for this ones:

  cloud_sub_ = create_subscription<sensor_msgs::msg::PointCloud2>(
      "points_rotated", rclcpp::SensorDataQoS(),
      std::bind(&PCLLocalization::cloudReceived, this, std::placeholders::_1));

  imu_sub_ = create_subscription<sensor_msgs::msg::Imu>(
      "vectornav/imu", rclcpp::SensorDataQoS(),
      std::bind(&PCLLocalization::imuReceived, this, std::placeholders::_1));

→ 🔄 Adjusting LiDAR Settings for Different Models

If you’re using a different LiDAR model, update the topic configuration in the pointcloud_rotation package to ensure correct data processing. The package expects a specific topic, /velodyne_points, to receive point cloud data.

  1. Update the Point Cloud Topic:
  • Navigate to pointcloud_rotation/src/pointcloud_rotation_node.cpp.
  • On line 8, change the topic in the subscription line to match your LiDAR’s point cloud topic:
sub_ = this->create_subscription<sensor_msgs::msg::PointCloud2>("/your_lidar_topic", 10, std::bind(&pointcloud_rotation_node::pointCloudCallback, this, std::placeholders::_1));

Note: The points_rotated topic is then published by this node and serves as an input for the Mapping and Localization sections.

  1. Disable Rotation for Non-Rotating LiDARs:
  • If your LiDAR does not require any rotation adjustments, modify the rotation parameters in global_navigation_launch/config/rotation_params.yaml.
  • Update the following settings:
pointcloud_rotation_node:
  ros__parameters:
    sensor_rotation_y_: 0.20944   # Set to 0.174533 for slight rotation or 0 for no rotation

Setting sensor_rotation_y_ to 0 will effectively disable the rotation correction, which is useful if your LiDAR is already aligned with the coordinate frame.

→ 🛣️ Considerations for Creating HD Maps with Vector Map Builder

When creating a Lanelet2Map in the Vector Map Builder, follow these steps to configure the map projection:

  1. Click on Change Map Project Info.
  2. Select Set MGRS from Lat/Lon and input the following coordinates:
    • Latitude: 49
    • Longitude: 8.4
  3. Click Convert to apply these settings.

Note: When exporting the map, you may encounter an error indicating that the component x or y is negative. This error can be safely ignored, as it does not impact the map creation process. Proceed with creating the map even if these errors appear.

→ 📥 Building

If it is the fist time you build the workspace follow the next commands to do not crash your computer.

colcon build --packages-select lio_sam
colcon build --packages-select ndt_omp_ros2
colcon build --packages-select lidar_localization_ros2
colcon build --packages-select vectornav_msgs
colcon build --packages-select vectornav
colcon build --packages-select velodyne_msgs
colcon build --packages-select velodyne_driver
colcon build --packages-select velodyne_laserscan
colcon build --packages-select velodyne_pointcloud
colcon build --packages-select velodyne
colcon build --packages-select lidar_imu_sync
colcon build --packages-select mapping_localization_launch
colcon build --packages-select polygon_msgs
colcon build --packages-select sdv_msgs
source install/setup.bash
colcon build --packages-select sdv_can
colcon build --packages-select sdv_control

colcon build --packages-select lanelet2_core
colcon build --packages-select lanelet2_maps
colcon build --packages-select lanelet2_io
colcon build --packages-select lanelet2_projection
colcon build --packages-select lanelet2_traffic_rules
colcon build --packages-select lanelet2_routing
colcon build --packages-select traffic_information_msgs
colcon build --packages-select lanelet2_validation
source install/setup.bash
colcon build

→ 🏅 Lidar config

sudo ifconfig enp2s0 10.66.171.101

→ 🏅 Can start

Inside the ros2_ws/src/Autonomous_Navigation_System/ folder:

chmod +x start.sh
sudo ./start.sh

→ 🏅 IMU Permistion

sudo chmod 666 /dev/ttyUSB0

→ 💡 Sensor Launchers

Launch individual or combined sensor configurations as needed:

  • For LiDAR only:
ros2 launch sensors_launch velodyne-VLP32C-launch.py
  • For IMU only:
ros2 launch sensors_launch vectornav.launch.py 
  • For LiDAR and IMU combined:
ros2 launch sensors_launch lidar_imu.launch.py 

→ 🌏 Launchers for mapping

Run the following commands to initialize mapping processes:

ros2 launch global_navigation_launch lidar_subprocessing.launch.py
ros2 launch robot_description display.launch.py
ros2 launch global_navigation_launch lio_sam.launch.py
  • lidar_subprocessing.launch.py: This launch file adjusts the LiDAR rotation by 0.2 radians on the Y-axis, compensating for its setup angle in the car 🚗. It also creates a buffer to synchronize LiDAR and IMU messages, ensuring the sensor data is aligned for accurate mapping.

  • display.launch.py (Robot Description): This launch configures the robot’s tf (transform) setup, where base_link 🌐 acts as the parent frame for all other frames.

  • lio_sam.launch.py: This command starts the LIO-SAM (LiDAR-Inertial Odometry and Mapping) process, which integrates LiDAR and IMU data to create a detailed, real-time map 🗺️ of the environment for localization and navigation.

→ 🛰️ Configure Launchers for Localization

  1. Open the localization.yaml file located at /global_navigation_launch/config/.
  2. Add the path to your cloudGlobal.pcd or cloudSurf.pcd file. Update the map_path parameter as shown below:
map_path: "/home/genis/Downloads/LOAM/cloudSurf.pcd"

After updating the file, launch the system with the following commands:

ros2 launch global_navigation_launch lidar_subprocessing.launch.py
ros2 launch robot_description localization_display.launch.py
ros2 launch global_navigation_launch lidar_localization_ros2.launch.py
ros2 launch global_navigation_launch can_and_control.launch.py
  • lidar_subprocessing.launch.py: This launch file compensates for the LiDAR setup on the car 🚗, applying a 0.2-radian rotation adjustment on the Y-axis. Additionally, it creates a buffer to synchronize LiDAR and IMU messages, ensuring precise alignment for accurate localization.

  • localization_display.launch.py (Robot Description): This file sets up the transform (tf) hierarchy, where the velodyne frame 🌐 acts as the parent frame. In this setup, velodyne is connected to the map frame, making it the primary reference for localization, with other frames structured accordingly.

  • lidar_localization_ros2.launch.py: This command launches the LiDAR-based localization process, integrating data from LiDAR and IMU sensors to create a real-time map 🗺️, enabling precise positioning within the environment.

  • can_and_control.launch.py: This command launch the control and the comunication with the can bus 0.

→ 🛣️ Launchers for HD map & waypoints routing

ros2 launch map_visualizer osm_visualizer.launch.py
ros2 launch waypoints_routing waypoints.launch.py

→ 🎥 Launchers rviz2

In you workspace path run:

rviz2 -d src/Autonomous_Navigation_System/global_navigation_launch/rviz/localization.rviz

→ 🛑 changes:

- Lanelet changes

In the file called /lanelet2_projection/LocalCartesian.cpp I change the to this when using localcartesian map type in orden to get the ele attribute from the oms correctly and not modify.

BasicPoint3d LocalCartesianProjector::forward(const GPSPoint& gps) const {
  BasicPoint3d local{0., 0., 0.};
  this->localCartesian_.Forward(gps.lat, gps.lon, gps.ele, local[0], local[1], local[2]);
  local[2] = gps.ele;
  return local;
}

also wacht that in the "lanelet2_io/io_handlers/OsmFile.cpp" this is in the code:

  static Nodes readNodes(const pugi::xml_node& osmNode) {
    Nodes nodes;
    for (auto node = osmNode.child(keyword::Node); node;  // NOLINT
         node = node.next_sibling(keyword::Node)) {
      if (isDeleted(node)) {
        continue;
      }
      const auto id = node.attribute(keyword::Id).as_llong(InvalId);
      const auto attributes = tags(node);
      const auto lat = node.attribute(keyword::Lat).as_double(0.);
      const auto lon = node.attribute(keyword::Lon).as_double(0.);
      // const auto ele = node.attribute(keyword::Elevation).as_double(0.);

      const auto ele = node.find_child_by_attribute(keyword::Tag, keyword::Key, keyword::Elevation)
                           .attribute(keyword::Value)
                           .as_double(0.);

      // std::cout << "ele: " << ele << std::endl;

      nodes[id] = Node{id, attributes, {lat, lon, ele}};
    }
    return nodes;
  }

- Polygon ros changes:

The Polygon2D structure has been modified to include a z offset, allowing for multiple polygons with different z offsets. The following files were updated to incorporate these changes:

  • polygon_rviz_plugins/src/polygons_display.cpp
  • polygon_rviz_plugins/src/polygon_parts.cpp
  • polygon_rviz_plugins/include/polygon_rviz_plugins/polygon_base.hpp

These modifications enable the use of 3D polygons with varied z positions in the ROS environment.

Polygon2D.msg:

# Vertices of a simple polygon. Adjacent points are connected, as are the first and last.
float64 z_offset
polygon_msgs/Point2D[] points

polygon_base.hpp:

  void updateProperties()
  {
    resetOutlines();
    if (mode_property_->shouldDrawOutlines())
    {
      Ogre::ColourValue outline_color = rviz_common::properties::qtToOgre(outline_color_property_->getColor());
      for (unsigned int i = 0; i < saved_outlines_.size(); ++i)
      {
        double z_offset = saved_outlines_[i].z_offset;  // Use the z_offset from each polygon
        outline_objects_[i]->setPolygon(saved_outlines_[i], outline_color, z_offset);
      }
    }

    if (!mode_property_->shouldDrawFiller() || saved_fillers_.empty())
    {
      resetFillers();
    }
    else
    {
      for (unsigned int i = 0; i < saved_fillers_.size(); ++i)
      {
        double z_offset = saved_fillers_[i].outer.z_offset;  // Use the z_offset from each complex polygon
        filler_objects_[i]->setPolygon(saved_fillers_[i], filler_colors_[i % filler_colors_.size()], z_offset);
      }
    }
  }