From decdbadf91ce2e3f4d27970bcbd57ce93ca22526 Mon Sep 17 00:00:00 2001 From: Vincent Beffara Date: Sun, 17 Mar 2024 19:31:21 +0100 Subject: [PATCH] Tweaks --- RMT4.lean | 17 ++--------------- RMT4/montel.lean | 5 +++++ 2 files changed, 7 insertions(+), 15 deletions(-) diff --git a/RMT4.lean b/RMT4.lean index c945797..d085fb5 100644 --- a/RMT4.lean +++ b/RMT4.lean @@ -43,11 +43,7 @@ lemma ContinuousOn_uderiv (hU : IsOpen U) : ContinuousOn uderiv (𝓗 U) := by def π“œ (U : Set β„‚) := {f ∈ 𝓗 U | MapsTo f U (closedBall (0 : β„‚) 1)} -lemma UniformlyBounded_π“œ : UniformlyBoundedOn ((↑) : π“œ U β†’ β„‚ β†’α΅€[compacts U] β„‚) U := by - rintro K ⟨hK1, _⟩ - refine ⟨1, zero_lt_one, ?_⟩ - rintro z hz x ⟨⟨f, hf⟩, rfl⟩ - exact hf.2 (hK1 hz) +example : π“œ U = 𝓕K U (fun _ => closedBall 0 1) := 𝓕K_const.symm lemma IsClosed_π“œ (hU : IsOpen U) : IsClosed (π“œ U) := by suffices : IsClosed {f : β„‚ β†’α΅€[compacts U] β„‚ | MapsTo f U (closedBall 0 1)} @@ -58,16 +54,7 @@ lemma IsClosed_π“œ (hU : IsOpen U) : IsClosed (π“œ U) := by (mem_singleton z) ⟨singleton_subset_iff.2 hz, isCompact_singleton⟩).continuous) lemma IsCompact_π“œ (hU : IsOpen U) : IsCompact (π“œ U) := by - have l1 (K) (hK : K ∈ compacts U) : EquicontinuousOn ((↑) : π“œ U β†’ β„‚ β†’α΅€[compacts U] β„‚) K := - UniformlyBounded_π“œ.equicontinuous_on hU (Β·.2.1) hK - have l2 : βˆ€ K ∈ compacts U, βˆ€ x ∈ K, βˆƒ Q, IsCompact Q ∧ βˆ€ (f : π“œ U), f.val x ∈ Q := by - intro K hK x hx - refine ⟨closedBall 0 1, isCompact_of_isClosed_isBounded isClosed_ball isBounded_closedBall, ?_⟩ - exact fun f => f.prop.2 (hK.1 hx) - rw [isCompact_iff_compactSpace] - refine ArzelaAscoli.compactSpace_of_closedEmbedding (fun _ hK => hK.2) ?_ l1 l2 - refine ⟨⟨by tauto, fun f g => Subtype.ext⟩, ?_⟩ - simpa [UniformOnFun.ofFun, range] using IsClosed_π“œ hU + simpa only [𝓕K_const] using isCompact_𝓕K hU (fun _ _ => isCompact_closedBall 0 1) -- `π“˜ U` : holomorphic injections into the unit ball diff --git a/RMT4/montel.lean b/RMT4/montel.lean index 5dc010b..1b11ec7 100644 --- a/RMT4/montel.lean +++ b/RMT4/montel.lean @@ -107,6 +107,11 @@ lemma UniformlyBoundedOn.equicontinuous_on def 𝓕K (U : Set β„‚) (Q : Set β„‚ β†’ Set β„‚) : Set (β„‚ β†’α΅€[compacts U] β„‚) := {f ∈ 𝓗 U | βˆ€ K ∈ compacts U, MapsTo f K (Q K)} +lemma 𝓕K_const {Q : Set β„‚} : 𝓕K U (fun _ => Q) = {f ∈ 𝓗 U | MapsTo f U Q} := by + ext f ; simp [𝓕K, 𝓗] ; rintro - ; constructor <;> intro h + Β· exact fun z hz => h {z} ⟨by { rintro w rfl ; exact hz }, isCompact_singleton⟩ (mem_singleton z) + Β· exact fun K ⟨h1, _⟩ => h.mono_left h1 + theorem isClosed_𝓕K (hU : IsOpen U) (hQ : βˆ€ K ∈ compacts U, IsCompact (Q K)) : IsClosed (𝓕K U Q) := by rw [𝓕K, setOf_and] ; apply (isClosed_𝓗 hU).inter